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We obtain analytic formulas for the frequency-dependent spin-Hall conductivity of a two-dimensional
electron gas (2DEG) in the presence of impurities, linear spin-orbit Rashba interaction, and external
magnetic field perpendicular to the 2DEG. We show how different mechanisms (skew scattering, side
jump, and spin precession) can be brought in or out of focus by changing controllable parameters such as
frequency, magnetic field, and temperature. We find, in particular, that the dc spin-Hall conductivity
vanishes in the absence of a magnetic field, while a magnetic field restores the skew-scattering and side
jump contributions proportionally to the ratio of magnetic and Rashba fields.
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The spin-Hall effect (SHE), i.e., the generation of a
transverse spin current in response to a dc electric field
[1–6], has attracted much attention recently, particularly
after a series of experiments [7–10] culminating in the
observation of the SHE at room temperature [10]. On the
theoretical front, however, there remains considerable un-
certainty as to the physical origin of the SHE, which
appears to depend on an intricate interplay of three pro-
cesses: (i) the skew-scattering (SS) due to spin-orbit inter-
action (SOI) between electrons and impurities, (ii) the side
jump (SJ) (due to the noncanonical character of the physi-
cal position and velocity variables in the presence of SOI
with impurities), and (iii) the spin precession caused by
spin nonconserving terms in the band structure, among
which we include the linear Rashba SOI generated by an
external electric field. To these we may add the influence of
an external magnetic field, which tends to lock the spins in
a fixed direction, thus reducing the importance of spin
precession. A first principles theory that includes all of
these effects on equal footing is very complicated. To our
knowledge, the diagrammatic approach by Tse and Das
Sarma [11] comes closest to fulfilling the order, and yet it
does not include magnetic field or frequency. However,
these diagrammatic calculations are very difficult to follow
in detail and do not lead to an intuitive understanding of the
striking nonadditive behavior of impurity and band struc-
ture effects.

Our goal in this Letter is to present the ‘‘phase diagram’’
of the SHE, i.e., to clarify in which range of experimentally
controllable parameters one should expect the dominance
of each mechanism mentioned above, and how the cross-
overs between different regimes occur. We do this for a
2DEG with Rashba SOI and a magnetic field perpendicular
to the plane. The two parameters that are most easily
controlled in an experiment are (i) the frequency ! of
the electric field and (ii) Zeeman energy !0. Ac-
cordingly, we plot our ‘‘phase-diagram’’ in the !��
!0=�RkF plane, where � is the electron-impurity scatter-
ing time and �RkF is the magnitude of the effective mag-

netic field due to Rashba SOI for electrons at the Fermi
wave vector kF. Throughout the Letter we assume !, 1=�,
�RkF,!0 � EF; i.e., all energy scales are smaller than the
Fermi energy.

Our qualitative conclusions are shown in Fig. 1. In
contrast to previous calculations [11], we found that the
dc limit (!�! 0) of the spin-Hall conductivity (SHC) is
zero in the presence of spin precession and in the absence
of a magnetic field (!0 � 0). As the magnetic field in-
creases, both SS and SJ contributions increase with the
ratio of the magnetic to the Rashba field (!0=�kF), thus
restoring the values they would have had at zero frequency
and zero magnetic field in the absence of spin precession.
In high-mobility samples the SS mechanism is the domi-
nant mechanism [12,13] overcoming the SJ contribution,
which has an opposite sign for attractive impurity poten-
tial. However, the SJ mechanism could well dominate in

FIG. 1 (color online). Different regimes of spin-Hall effect in
the !��!0=�RkF plane. �D is Drude conductivity; �ss is skew
scattering. Spin-orbit interactions and mobility are fixed. See
discussion in the text.

PRL 100, 026602 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JANUARY 2008

0031-9007=08=100(2)=026602(4) 026602-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.026602


low-mobility samples. As discussed in Ref. [13], the mo-
bility can be controlled to some extent by changing the
temperature T, and this allows one in principle to tune
between SS and SJ contributions. For this reason we use
the label SS/SJ for the left side of diagram, where!�� 1.
In the ac regime (!�� 1) and for low magnetic field
impurities become irrelevant, leaving room for the intrinsic
SHE with ‘‘universal’’ conductivity e=8� [4]. Finally, in
the ac regime and at high magnetic field the SHC declines
to zero in different manners depending on whether !� or
the magnetic field is kept constant as shown in Fig. 1.

In what follows we describe the main points of our new
theoretical approach, which enables us to calculate the
spin-Hall conductivity in different regions of the parameter
space and to derive simple analytic formulas describing the
crossovers between different regimes.

Our model is defined by the Hamiltonian
 

Ĥ �
XN
i�1

�
p̂2
i

2m�
� V� ~̂ri� �

�R
@
�p̂iyŜix � p̂ixŜiy�

�
�1

@
	p̂ixryV� ~̂ri� � rxV� ~̂ri�p̂iy
Ŝiz �!0Ŝiz

�
: (1)

Besides the kinetic energy and the usual electron-impurity
potential V� ~̂ri�, we have two distinct spin-orbit couplings.
The �1 coupling between the electrons and the impurities
conserves the z component of the spin and is responsible
for SS and the SJ effects. The �R coupling—also known as
Rashba coupling—creates a momentum-dependent mag-
netic field in the plane, which breaks the conservation of Sz
and causes spin precession. This term is responsible, under
appropriate conditions, for the intrinsic contribution to
SHE. Finally, we have included a magnetic field perpen-
dicular to the plane. The Zeeman splitting, !0, and the
frequency! of the ac electric field (not shown in Ĥ) are the
two control knobs in terms of which our ‘‘phase diagram’’
will be plotted.

The skew-scattering effect is easily described in the
Boltzmann equation formalism [12], but it is difficult to
treat in the diagrammatic approach [11]. On the other hand,
spin-precession effects are easily included in the diagram-
matic formalism, but are problematic in the Boltzmann
equation formalism (the distribution function becomes a
2� 2 matrix). We get the best of two worlds by combining
the two approaches in the following manner. First we
notice that the skew-scattering collision term in the
Boltzmann equation is formally equivalent to the imposi-
tion of a ‘‘spin-electric field’’ Ezy, which accelerates up-
spin and down-spin electrons (‘‘up’’ and ‘‘down’’ are de-
fined with respect to a z axis) in opposite directions along
the y axis, perpendicular to the flow of the charge current
(x). The problem is now ‘‘reduced’’ to calculating the z
spin current jzy which flows along the y axis in response to
the spin-electric field Ezy in the same direction. This can be
done with the help of the standard diagrammatic formal-
ism, including both electron-impurity scattering and spin
precession, but not the skew-scattering processes, for the

skew scattering has already ‘‘done its job’’ by producing
the spin-electric field Ezy (in other words, we work to first
order in �1). Thus we have

 jzyjss � �zyyE
z
y; (2)

where �zyy is the longitudinal spin conductivity calculated
in the absence of skew-scattering (or side jump) effects. On
the other hand, Ezy has the well-known expression

 Ezy � �ssjx; (3)

where jx is the current density in the x direction and �ss �
�m=ne2�ss is the skew-scattering resistivity, calculated
from the Boltzmann collision integral [12]. An explicit
expression for the skew-scattering rate 1=�ss is given in
Eq. (29) of Ref. [12]: notice that it is proportional to �1 and
positive [14]. jx can be expressed as �DEx, where Ex is the
electric field in the x direction and �D is the Drude con-
ductivity of the electron gas. Therefore, Eq. (2) becomes:

 jzyjss � �zyy�ss�DEx; (4)

from which we extract the first important result of this
Letter, namely, the expression for the skew-scattering con-
tribution to the SHC �SH,

 �SH
ss � �zyy�ss�D: (5)

The dependence of this formula on spin-precession rate,
frequency of the ac field, and magnetic field will be ob-
tained below. In particular, we will show that �SH

ss vanishes
at low magnetic field (spin-precession regime), and it
recovers the zero-precession value (�2

D�ss@=e) at high
magnetic field. We will then consider separately side
jump �SH

sj and purely intrinsic (coming from band struc-
ture) �SH

R contributions to the spin-Hall conductivity.
They are most efficiently analyzed in terms of the Kubo

formula for the spin-Hall conductivity. The SJ contribu-
tion, similar to SS term, vanishes at low magnetic field
(spin-precession regime) and recovers its value in high
magnetic fields. The remaining intrinsic contribution is
easily calculated by standard diagrammatics (including
vertex corrections) and leads to the well-known e=8�
result in the appropriate ac regime.

Skew-scattering.—As discussed above, the central role
in calculating �SH

ss is played by the longitudinal spin-
channel conductivity �zyy. The formal expression for the
real part of �zyy is

 �zyy�!� � �
4ne

m�2@

=mhhŜzp̂y; Ŝzp̂yii

!
; (6)

where p̂y, Ŝz are momentum and spin operators for a single
electron [15], the double bracket is the usual notation for
the spin-current–spin-current response function, and n is
the areal density of the electron gas. Our objective is to
calculate this Kubo formula including elastic electron-
impurity scattering in the Born approximation, spin pre-
cession due to a Rashba spin-orbit interaction, and a mag-
netic field along the z axis, but neglecting spin-orbit
interactions with the impurities. The Feynman diagrams
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for �zyy�!�, to the desired level of accuracy, are shown in
Fig. 2. The solid lines represent 2� 2 Green’s functions
including Rashba spin-orbit coupling, magnetic field, and a
diagonal disorder self-energy �i=2��sgn �!�, where 1=� is
the elastic scattering rate:

 Ĝ�p;!� �
!� �p � ~hp ~̂S�

i
2� sgn �!�

	!� �p �
i

2� sgn �!�
2 � h2
p=4

: (7)

Here ~hp � ��Rky;��Rkx; !0� combines the Rashba in-
plane field (x and y components) and the magnetic field
along the z axis in a single effective field. The dashed lines
are electron-impurity interactions (averaged over disor-
der), and there are spin-current operators pySz at the ver-
tices. The empty bubble, calculated by the standard
procedure with �RkF, !0, and 1=� all much smaller than
the Fermi energy, is

 �zyy�!�jbubble ’
@

e
�D

1� �!��2
1�!2

0�
2

1��2�2 ; (8)

where �D � ne2�=m� is the Drude conductivity and � ������������������������������
��RkF�

2 �!2
0

q
is the spin-precession frequency.

Equation (8) suggests that the spin-channel conductivity
is similar to the ordinary Drude conductivity, only some-
what reduced by precession about the in-plane Rashba
field. The inclusion of vertex corrections changes the result
drastically. The sum of the ladder diagrams produces a
‘‘dressed’’ spin-current vertex �̂z

y of the form:

 �̂ z
y � p̂yŜz �

�Rk2
F	�!0��Ŝx � �1� i!��Ŝy


�2
Rk

2
F�� 2�2��1� i!��

: (9)

Including �̂z
y in the calculation of the spin-channel con-

ductivity we get

 �zyy�!� �
2@�D
e

cos2��1� cos2��

�1� cos2��2 � 4!2�2 ; (10)

where cos� � !0

� is the cosine of the angle between the
external magnetic field and the full effective magnetic field
~�. While Eq. (10) reduces to the empty-bubble result in the

limit !0 � �RkF, its most striking feature is that it van-
ishes identically (i.e., at all frequencies) in the opposite
limit !0 � �RkF. In other words, the spin-channel con-
ductivity is zero in the absence of an external magnetic
field, as long as an infinitesimal spin-precession rate �RkF
is present. Accordingly, the skew-scattering spin-Hall con-
ductivity from Eq. (5) is [16]

 �SH
ss �

2@�2
D�ss

e
cos2��1� cos2��

�1� cos2��2 � 4!2�2 (11)

which vanishes in the absence of an external magnetic field
and recovers the value �2

D�ss@=e for strong magnetic
fields. The vanishing of the spin conductivity is a peculiar

feature of the linear Rashba model, in which the spin
current p̂yŜz is proportional to the time derivative of Ŝy:

p̂yŜz � �
_̂Sy=�R. The expectation value of a time deriva-

tive must vanish at zero frequency. This is the same reason
which causes the vanishing of the Rashba spin-Hall con-
ductivity in the dc limit.

Side jump.—In a recent Letter [13] we have shown how
to identify the SJ contribution in the Kubo linear response
formalism. We perturb the Hamiltonian (1) with a uniform
electric field of frequency ! in the x direction. After a
series of manipulations, which have been described in
Ref. [13], we arrive at the following Kubo formula for
SHC:
 

�SH
yx �!��

ne
im�!

���
p̂yŜz;

p̂x
m�
�
�R
@
Ŝy

���

�
�1ne

2im�!

�
4hhp̂yŜz;ryV� ~̂r�Ŝzii

@
2 �hhrxV� ~̂r�;p̂xii

�
:

(12)

The first term on the right-hand side produces SS as well as
possible ‘‘intrinsic’’ contributions which are discussed in
next section. The second line of this equation, which ex-
plicitly shows a dependence on�1, is responsible for the SJ
contribution [17], denoted �SH

sj . We now focus on this
contribution. Using the Heisenberg equation of motion
for the momentum operator _̂pix � �rxV� ~̂ri� in zero order
in �1 (because SJ terms are already explicitly linear in �1),
we rewrite the SJ contribution as

 �SH
sj �!� �

e�1n
2im�!

�
hh _̂px; p̂xii �

4hhp̂yŜz; _̂pyŜzii

@
2

	
: (13)

In the first term in the square brackets we apply the
standard rule of integration, which allows us to replace
_̂px=i! by �p̂x and rewrite it (its real part) as:

 

�1en
2im�!

hh _̂px; p̂xii �
��1ne

2m�
hhp̂x; p̂xii �

�1ne

2�1�!2�2�
;

(14)

where the last equality follows from the well-known form
of the current-current response function in a weakly dis-
ordered system. The second term in the square brackets of
Eq. (13) can be rewritten as follows:
 

�
1

i!
hhp̂yŜz; _̂pyŜzii � �

1

i!

��
p̂yŜz;

d
dt
�p̂yŜz� � p̂y

_̂Sz

��
:

(15)

Applying again the integration formula, the first term of
Eq. (15) yields [18]:

 

�2en�1

m�
hhp̂yŜz; p̂yŜzii �

e�1n
2

cos2��1� cos2��2

�1� cos2��2 � 4!2�2 :

(16)

In the absence of spin precession (i.e., for !0 � �RkF,
cos� ’ 1) and for zero frequency the contributions (14)
and (16) add up to the ‘‘usual’’ SJ conductivity �1ne of

FIG. 2. Diagrammatic representation of ladder approximation
to calculate the spin-channel conductivity.
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Ref. [13]. In the opposite limit of !0 � �RkF ( cos� � 0)
this term vanishes for the same reason as �SH

ss . The second
term on the right-hand side of Eq. (15) can be rewritten as

hhŜy; p̂y� ~̂p 
 ~̂S�ii (we use the equations of motion _̂Sz �

�R ~̂p 
 ~̂S and p̂yŜz � �
_̂Sy=�R). In the limit of zero fre-

quency and zero magnetic field this reduces to
hhp̂yŜy; p̂yŜyii � �@2=4�hhp̂x; p̂xii, which exactly cancels
the contribution from (14) and causes the SJ contribution
to vanish. For general magnetic fields and frequencies the
total �SH

sj is finally given by the formula [19]

 �SH
sj �!� �

�1ne
2

�
cos2�

1�!2�2 �
2cos2��1� cos2��

�1� cos2��2 � 4!2�2

	
;

(17)

which in the dc limit simplifies to

 �SH
sj �!� �

�1necos2�
2

�
3� cos2�

1� cos2�

�
: (18)

Summarizing, the side jump conductivity in the dc limit
(!�� 1) grows from zero at !0 � 0 to the ‘‘full’’ value
(�1ne) at high magnetic fields, while it tends to zero in
high frequency limit.

Rashba contribution.—Evaluating the first line of
Eq. (12) in the absence of skew scattering and side jump,
which we have already taken into account, leads to the
well-known result [20,21] �SH

R �!� �
e

8�
�!��2

�!��2�1=4
, which

vanishes at ! � 0 and tends to the ‘‘ballistic’’ limit e=8�
for !� 1=�. We have found that the behavior of �SH

R �!�
as a function of external perpendicular magnetic field and
frequency is given by:

 �SH
R �!� �

e
8�

�2
Rk

2
F

�2

4!2�2

�1� cos2��2 � 4!2�2 ; (19)

which is a decreasing function of magnetic field.

Conclusions.—The results of our analysis are summa-
rized in Fig. 3 which shows the full spin-Hall conductivity
�SH, including Rashba, skew-scattering, and side jump
terms, as a function of two variables, frequency and mag-
netic field, for realistic values of the parameters. The figure
shows the smooth crossovers between different regimes
and should be useful to experimentalists attempting to
extricate the various components of this still quite intrigu-
ing effect.
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FIG. 3 (color online). Behavior of spin-Hall conductivity
as a function of !� and !0=�RkF and carrier concentration
n2D � 2� 1012 cm�2, � � 1 m2=V s, m � 0:067me, �1 �
0:053 nm2, �RkF � 10 meV. For calculation of skew scattering,
we assumed square potential characterized by �=�ss � 0:002
like in Ref. [12].
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