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We explain, in a consistent manner, the set of seemingly conflicting experiments on the finite
temperature Mott critical point, and demonstrate that the Mott transition is in the Ising universality class.
We show that, even though the thermodynamic behavior of the system near such critical point is described
by an Ising order parameter, the global conductivity can depend on other singular observables and, in
particular, on the energy density. Finally, we show that in the presence of weak disorder the dimensionality
of the system has crucial effects on the size of the critical region that is probed experimentally.
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Although band theory predicts that a system of electrons
in a solid with one electron per site (unit cell) should be
metallic, such a system ultimately insulates [1,2] once the
local electron repulsive interactions exceeds a critical
value. The onset of the insulating state, the Mott transition,
arises from the relative energy cost of the on-site Coulomb
repulsion U between two electrons on the same lattice site,
and the kinetic energy, represented by the band width W.
Then, the transition is governed solely by the ratio ofU=W.
At T � 0, it is often the case that symmetries of the micro-
scopic system, associated with charge, orbital or spin order,
may be broken in the Mott insulating state. However, at
sufficiently high temperatures T, or in strongly frustrated
systems, no symmetry is broken at the finite-T Mott tran-
sition. Then, the transition is characterized by paramag-
netic insulating and metallic phases, whose coexistence
terminates at a second-order critical point, depicted in
Fig. 1(a). In this Letter, we are concerned with the univer-
sal properties of this classical critical point [3], as revealed
by a series of apparently conflicting experiments on
�Cr1�xVx�2O3 [4] and organic salts of the �-ET [bis(ethy-
lenedithio) tetrathiafulvalene] family [5].

Since no symmetry is broken at the finite-T Mott tran-
sition, in a strict sense there is no order parameter.
Nonetheless, experimental [4,5], as well as theoretical
evidence [6,7] suggests that the transition is in the Ising
universality class, similar to the liquid-vapor transition. For
example, Castellani et al. [6] constructed an effective
Hamiltonian for this problem, and proposed that double
occupancy plays the role of an order parameter for the Mott
transition. On the insulating side, doubly occupied sites are
effectively localized, but in the metal, they proliferate. A
Landau-Ginzburg analysis [7] provided further evidence
for a nonanalyticity in the double occupancy at a critical
value of U=W that defines a Mott transition. Ising univer-
sality follows immediately because double occupancy,
hni"ni#i, is a scalar local density field.

Experimentally, the universality of the Mott critical
point is typically probed by some external parameter,
such as pressure, which can tune the ratio W=U.
Measurements of the conductivity, �, on �Cr1�xVx�2O3

[4] found that away from the critical point, the exponents
defined through

 ���t; h � 0� � ��t; h � 0� � �c / jtj
��;

���t � 0; h� / jhj1=�� ; @��t; h�=@hjh�0 / jtj
���;

(1)

have mean-field Ising values, �� ’ 1=2, �� ’ 1, and �� ’
3. Here, t � �T � Tc�=Tc and h � �P� Pc�=Pc, with
(�c, Tc, Pc) denoting the corresponding values at the
critical endpoint. Close to the critical region, Limelette
et al. [4] observed a drift to the critical exponents of the
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FIG. 1 (color online). (a) Typical phase diagram of Mott
transitions as a function of pressure P and temperature T. At
low T and P, a Néel antiferromagnetic insulator (AFI) appears; it
becomes a paramagnetic insulator (PI) if T increases, or a
paramagnetic metal (PM) if P increases. Dashed line: first-order
transition ending at a liquid-gas critical point. Full lines: con-
tinuous phase transition to the ordered state. Colored regions:
critical (dark) and mean-field (light) regimes of the critical point.
(b) An Ising configuration on the triangular lattice. Up (down)
spins correspond to conducting (insulating) grains of linear size
of the order of the system’s dephasing length.
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3D Ising universality class. Mean-field behavior is also
seen in NiS2 [8].

However, similar pressure measurements [5] on the
quasi-2D organic salts of the �-ET family appear to chal-
lenge the view that the Mott transition is in the Ising
universality class. In this material, Kagawa et al. [5] found
that their data is described by the exponents �� ’ 1, �� ’
1, and �� ’ 2, which do not seem to be consistent with the
known exponents of the 2D Ising model whose exponents
are [9] � � 1

8 , � � 7
4 , and � � 15. Since the exponents

obey the scaling law �� � ����� � 1�, it was proposed
that the Mott transition is in a new, as yet unknown
universality class. The situation is further complicated by
thermal expansion measurements [10] that claim to mea-
sure the heat capacity exponent � and find 0:8<�< 0:95.
This result is not only in sharp contrast to the expectation
for an Ising transition (where � � 0 for d � 2), it also
strongly violates the scaling law �� 2�� � �� � 2, if
one uses the exponents of Ref. [5].

In this Letter, we present a unified phenomenological
description of all of these experimental facts within an
Ising-type model, and resolve the issue of the universality
class of the Mott transition. A complete description of
these experiments requires to take into account that the
conductivity depends on all possible singular observables
of the associated critical system, and not just on the ther-
modynamic order parameter associated with the phase
transition. Similar considerations were made in magnetic
systems near the Curie temperature [11–13], to explain the
critical exponent of the conductivity along the coexistence
curve. In that case, a symmetry of the microscopic defini-
tion of the conductance prevented any coupling of the
global conductivity to odd moments of the order parameter,
along the coexistence line. Even though similar in spirit,
the situation here is much different. Starting from an
effective microscopic model near an Ising critical point,
we show that: (i) the conductivity typically depends on all
possible singular thermodynamic observables of the sys-
tem, namely, the order parameter and energy density of the
Ising model; (ii) when the coupling to the energy density
dominates, there exists a large regime around the critical
point, where the critical exponents for the conductivity are
���; ��; ��� � �1;

7
8 ;

15
8 �, that agree (within the error bars)

with the findings of Kagawa et al. [5], and the correspond-
ing mean-field exponents are ��MF� ; �MF� ; �MF� � � �1;

1
2 ;

3
2�;

(iii) a crossover to Ising exponents is obtained in the order
parameter dominated regime as seen in Refs. [4,8]; (iv) in
the presence of disorder the Mott critical point ultimately
belongs to the random-field Ising model universality class,
and therefore the dimensionality of the system under study
is even more important for specifying its critical properties.

In order to resolve the discrepancies raised by these
experiments, we consider the behavior of the conductivity
of the system near the Mott critical point, assuming that it
belongs to the 2D Ising universality class. Rather than
starting from a microscopic picture, e.g., a Hubbard model,

we consider a coarse-grained model with the correct sym-
metries in which the physics of the relevant transport
degrees of freedom is captured. In this picture, one defines
coarse-grained regions, of linear size of the order of the
dephasing length l� of the system, which are either insu-
lating or conducting. Along these lines, we consider an
Ising model on a 2D lattice [cf. Fig. 1(b)]. Near the critical
point, where the correlation length for density fluctuations
� diverges, it is expected that the relevant degrees of free-
dom behave classically. The Ising variables Si on each
lattice site represent the fluctuating density of mobile
carriers on microscopic ‘‘grains’’ of linear size of the order
of the dephasing length l�, which are conducting (Si �
�1), or insulating (Si � �1). The Hamiltonian is

 �H � �
1

T

X

hiji

SiSj �
h
T

X

i

Si; (2)

where T is the temperature, P and Pc are the pressure and
the critical pressure, respectively, and h / P� Pc plays
the role of the Ising magnetic field. This model is expected
to describe the physics near the critical point, where ��
l�. In this limit, all other interactions beyond nearest-
neighbor are irrelevant. Near the critical point, the most
singular effect of the pressure is described by a coupling to
the order parameter.

To relate the order parameter fluctuations to the trans-
port properties we will define an associated resistor net-
work for this model, an approach that has been successfully
used in other strongly correlated systems [14,15]. Let �C
and �I be the local conductivities of the conducting and
insulating regions, respectively. We define the bond con-
ductance of the network model simply by adding these two
conductivities in series. The bond conductance has three
possible values, depending on the state of each grain,
which can both be conducting, both insulating, one con-
ducting and the other insulating. Thus, the conductance of
the bond (i, j) has the form

 �ij � �0�1� gm�Si � Sj� � g	SiSj�: (3)

Even in this toy model, the microscopic conductivity, �ij,
couples both to the order parameter, Si, and to the energy
density, SiSj, of the Ising model with naturally large cou-
plings, gm and g	, defined in Eq. (3). More specifically, we
find that �0 �

1
4 ��C � �I� �

�C�I
�C��I

, gm �
�C��I

4�0
, and

g	 �
��C��I�2

4�0��C��I�
. At high contrast, �C � �I, we get gm ’

g	 ’ 1, whereas, at low contrast, j�I � �Cj 	 �C, we get
g	 < gm ! 0.

The conductivity of the 2D Ising model we described is a
nontrivial quantity to compute. As it was shown in the
simpler case of the random resistor network (RRN) [16],
networks of bonds with conductance �C ��I� chosen ran-
domly with probability p and 1� p, the global conductiv-
ity becomes nonzero as soon as an infinite percolating and
conducting cluster emerges in the system. When �I � 0,
the critical exponent �� of the conductivity is nontrivially
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related to the fractal properties of the incipient infinite
conducting cluster. This exponent is larger than unity for
random uncorrelated networks and larger than the expo-
nent of the order parameter, because dangling bonds of the
infinite cluster do not contribute to the conductivity. On the
other hand, it becomes much less than unity for correlated
networks, and typically very close to the exponent of the
order parameter, since the infinite cluster is connected with
few dangling bonds.

On the other hand, when �I > 0, a conducting cluster is
less distinguishable from that of an insulating one, and the
complex effects coming from the fractal cluster boundaries
are smeared out. In the context of RRN, the percolation
transition is not seen in the behavior of the conductivity,
which seems to show just a crossover. If the contrast is low,
�I ’ �C, the actual conductivity of a single bond between
sites i, j, �, should depend only on local observables, and
we can formally expand it in powers of gm and g	 [17],

 � � �0 � gmh�Si � Sj�i � g	hSiSji � . . . ; (4)

where the ellipsis represents more complex products of
local spin operators (weighed by rapidly decaying func-
tions) [17]. Near the Ising critical point, the most singular
contribution of the expectation values of multispin opera-
tors in Eq. (4) is given by the expectation value of the most
singular, ‘‘primary’’, operators of the Ising critical point,
the order parameter m and the energy density 	. Thus, the
most singular term of multispin operators with odd (even)
number of spins is proportional to the order parameter
(energy density). Therefore, within the range of conver-
gence of this expansion,

 � � �0�gm; g	� � fm�gm; g	�hmi � f	�gm; g	�h	i; (5)

where �0, fm, f	 are nonuniversal regular polynomials in
gm and g	. Provided that the critical behavior is still
controlled by the fixed point theory of the Ising model,
the total conductivity should have the structure of Eq. (5).
Thus, at finite contrast, Eq. (5) predicts that the actual
conductivity is the sum of even and odd components, under
the Ising symmetry transformation, � � �0 � �even �
�odd, and it should exhibit a crossover from an energy
density dominated behavior at short distances to an order
parameter dominated behavior at long distances. The
crossover scale is controlled by the relative size of the
functions fm and f	 (cf. Fig. 2). This behavior breaks
down at high contrast where there is multifractal behavior
(cf. inset in Fig. 2 and Ref. [18]).

We can understand the experiments of Refs. [4,5,8], if
we assume that Eq. (5) applies. The results of Refs. [4,8]
follow by assuming that fm�gm; g	�> f	�gm; g	�, and the
conductivity scales as the order parameter. Conversely, the
results of Ref. [5] follow if f	�gm; g	� � fm�gm; g	�, and
the conductivity, for an extended regime near the critical
point, scales as the energy density of the Ising model. In
this case �� / jmj
 holds, where 
 � �1� ��=�. Then, it

follows that �� � 
�, �� � �=
 and �� � �� ��1�

�. The resulting critical exponents are ���; ��; ��� �
�1; 7

8 ;
15
8 �, very close to the experimental values. These

exponents obey �� � ����� � 1�, if � � ���� 1�, i.e.,
the conductivity exponents obey a scaling relation identical
to that for the Ising exponents, in agreement with the
experimental verification of this scaling in Ref. [5]. In
addition, the scaling obtained by Kagawa et al. [5] only
depends on �� � ����, as in our theory.

In order to verify the theory presented above, we per-
formed Monte Carlo simulations of the 2D Ising model on
square and triangular lattices, using the Wolff cluster al-
gorithm [19]. For the calculation of the conductivity, for
each Ising configuration we used the Franck—Lobb algo-
rithm [20], or explicitly solved Kirchhoff equations. As
expected, we found that at the Ising critical point, for gm,
g	 	 1, the even component of the conductivity �even

scales as the energy density, while the odd component
�odd scales as the order parameter (cf. Fig. 3). As gm, g	
approach unity, a slow crossover exists to a fractal regime
of the Ising clusters, which is crucial for specifying the
critical exponent of the conductivity, consistent with the
results of Ref. [18] (cf. inset in Fig. 2.)

References [4,8] report 3D mean-field Ising behavior
and a small critical region in �Cr1�xVx�2O3 and NiS2 under
pressure, respectively, in contrast to the extended critical
region with 2D Ising exponents of Ref. [5]. We can under-
stand these experiments by considering the effects of
quenched disorder on an Ising critical point. The difference
between a quasi-2D and a 3D material is a strongly aniso-
tropic Ising interaction along the direction perpendicular to
the planes. Disorder that locally favors the localized over
the delocalized state or vice versa, corresponds to a random
magnetic field, and couples to the order parameter of the
Ising transition. This induces density fluctuations. The
relevant model for this discussion is the anisotropic 3D
random-field Ising model (RFIM),

 H � �Jxy
X

fijgxy

SiSj � Jz
X

fklgz

SkSl �
X

i

hiSi; (7)
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FIG. 2 (color online). Crossover behavior of the conductivity
at finite contrast: the energy density (order parameter) dominates
at short (long) length scales. Inset: Fractal scaling at large
contrast.
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where hi is a random field with variance �. For d � 3,
there is a continuous phase transition in the 3D random-
field Ising model (3DRFIM) universality class [21] for any
anisotropy Jxy=Jz, an irrelevant operator at the 3D RFIM
fixed point. However, for large anisotropy and weak dis-
order, relevant to the quasi-2D organics, there is a large
dimensional crossover regime from 2D RFIM behavior,
with an exponentially long correlation length, to the nar-
rower 3D RFIM criticality [22]. What changes between the
3D isotropic materials and the quasi-2D organics is not the
universality class, but where the planar correlations be-
come critical. For weak disorder �	 Jxy and strong an-
isotropy Jz=Jxy 	 1, the planes are essentially decoupled
and 2D-RFIM behavior holds with �xy � 1 in a large
region away from the transition point. When Jz ’ Jxy, the
critical region is narrow, and controlled by the 3D RFIM
fixed point.

With regards to the thermal expansion measurements
that claim to measure the heat capacity exponent � [10],
we argue that the volume change is proportional to the
Ising order parameter of the Mott transition, i.e., �l / m,
yielding l�1dl=dT / t��1. The thermal expansion diverges
with exponent 1� � � 0:875, consistent with Ref. [10]
where it is found in the range 0.8–0.95.

Some major predictions can be drawn from our picture.
First, all thermodynamic observables near the Mott critical
point should have Ising critical exponents. Second, regard-
ing the critical behavior in quasi-2D organic salts [5], in the
clean system, the conductivity along the coexistence line
should have the same critical exponent (�� � 1) in both
mean-field and true-critical regimes. This means that the
conductivity jump ��J 
 ��T; h � 0�� � ��T; h � 0��
along the coexistence line, which should be proportional to
the order parameter, should have distinct mean-field and
critical regimes, where ���J

� 1=2 and ���J
� 1=8 re-

spectively. Finally, the first-order Mott transition should be
broadened by disorder, thereby rounding the conductance

jump to a continuous transition [23,24], with effects of
glassiness and spatial inhomogeneity [15,25,26].
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FIG. 3 (color online). Monte Carlo data which verify the
expected behavior of the conductivity when gm, g		 1. �even

scales as the energy density (see text). Inset: �odd scales as the
order parameter.
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