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Through acoustic scattering theory we derive the mass density and bulk modulus of a spherical shell
that can eliminate scattering from an arbitrary object in the interior of the shell—in other words, a 3D
acoustic cloaking shell. Calculations confirm that the pressure and velocity fields are smoothly bent and
excluded from the central region as for previously reported electromagnetic cloaking shells. The shell
requires an anisotropic mass density with principal axes in the spherical coordinate directions and a
radially dependent bulk modulus. The existence of this 3D cloaking shell indicates that such reflectionless
solutions may also exist for other wave systems that are not isomorphic with electromagnetics.
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Pendry et al. [1] have shown that arbitrary coordinate
transformations of Maxwell’s equations can be interpreted
in terms of an electromagnetic material in the original
coordinates with transformed permittivity and permeabil-
ity values. Consequently, the bending and stretching of
electromagnetic fields specified by coordinate transforma-
tions can be implemented with electromagnetic materials,
enabling unexpected and interesting solutions such as elec-
tromagnetic cloaking [1,2].

The degree to which this cloaking concept can be ex-
tended to other classes of waves is not known in general.
Miller [3] described an active approach for general wave
cloaking based on sensing and nonlocal retransmission of
signals on the surface of an object. Leonhardt [4] has
described how a 2D object can be cloaked in the short
wavelength limit in a way that also applies to different
classes of waves. Milton et al. [5] showed that the coor-
dinate transform approach cannot be extended in general to
elastic media. Cummer and Schurig [6] showed, however,
an exact analogy exists between 2D electromagnetics and
acoustics for anisotropic materials and therefore that a 2D
acoustic cloaking shell exists. This isomorphism does not
extend to three dimensions, however, which means that a
3D acoustic cloaking shell, if it exists, is different from its
electromagnetic counterpart.

Chen et al. [7] performed a spherical harmonic scatter-
ing analysis of the 3D spherical cloaking shell described in
[1] and confirmed that this shell renders any object in its
interior free of scattering in all directions. Here we use
scattering analysis as the starting point to derive a set of
acoustic material parameters for a shell that renders a 3D
object in the interior of the shell free of acoustic scattering.

For an inviscid fluid with zero shear modulus, the small
perturbation dynamics are described by conservation of
momentum and the stress-strain relation. Because [6]
showed that mass density anisotropy is required for 2D
acoustic cloaking, we assume this anisotropy from the

outset. With a exp��i!t� time dependence, these equa-
tions of motion are

 rp � i! �����r��0v; (1)

 i!p � ���r��0r � v; (2)

where p is scalar pressure, v is vector fluid velocity, � is the
inhomogeneous fluid bulk modulus relative to �0, and ��� is
an inhomogeneous generalized fluid mass density tensor
relative to �0. These equations are the fluid version of the
more general elastodynamic equations considered in [5].
Although anisotropic mass density is not a property com-
monly encountered in natural materials, it naturally arises
in the analysis of elastodynamics of strongly inhomoge-
neous composite materials [8]. It is important to note that
the anisotropic mass density in (1) is an effective dynamic
mass density that is not necessarily tied to the physical
mass density of any of the individual elements of a com-
posite material [9,10]. Milton et al. [5] describe a simple
conceptual model based on mass-loaded springs embedded
in a host matrix that is described by an anisotropic mass
density. An applied force near the internal resonant fre-
quency of such an inclusion will produce large motions
thereby giving the medium a small effective mass density.
If the internal springs vary with direction, the effective
mass density will also vary with direction and thus be
anisotropic. A composite material containing anisotropic
mechanically resonant inclusions in a fluid host matrix will
obey the scalar stress-strain relation because of the fluid
matrix yet will have an anisotropic dynamic response, and
therefore an anisotropic dynamic mass density, when
forces are applied.

We consider these fields in a domain shown in Fig. 1, in
which a uniform fluid of isotropic density �0 and bulk
modulus �0 is present for r > b and r < a, while for a <
r < b the material is an inhomogeneous and anisotropic
shell to be specified. A uniform plane wave is incident on
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the shell from the � � 0 direction, without loss of
generality.

Symmetry dictates that if a cloaking shell exists, its
scattering parameters must be independent of the incident
wave direction. Therefore, its material properties must
depend only on radius, and the principal axes of the mass
density tensor must be aligned with spherical coordinate
directions. The material properties to be determined are
�r�r�, ���r�, ���r�, and ��r�. Moreover, symmetry implies
that ���r� � ���r�. These parameters are all assumed to be
normalized with respect to the background density �0 and
bulk modulus �0.

It is straightforward to show that p satisfies the equation

 r � � ����1rp� �
!2

�
p � 0: (3)

We first focus on the solution to (3) inside the anisotropic
shell. In this region and in spherical coordinates, this
equation becomes
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where we have used the compressional wave velocity in the
background medium vp0 �

�������������
�0=�0

p
and ���r� � ���r�.

The azimuthal mass density elements have been moved
outside their derivatives because of their purely radial
dependence.

Letting p�r; �; �� � f�r�g���h��� through separation
of variables and after multiplying all terms by
��1�� sin�, the ordinary differential equation for f�r�
becomes
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where we have used the wave number in the background
medium k2

0 � !2=v2
p0. The resulting equations for g���

and h��� are in standard form (e.g., [11]) and their solu-
tions are the associated Legendre functions g��� �
K0P

m
n �cos�� (the other Legendre function has been ex-

cluded because of the domain) and the azimuthal harmon-
ics h��� � K1 cosm�� K2 sinm�. However, (5) is not in
general the spherical Bessel equation because of the r
dependence of the acoustic properties of the shell.

Chen et al. [7] showed that an important element in
making the 3D electromagnetic cloaking shell scatter-
free is a radial shift from r to �r� a� in the equation for
f�r� (which is the Riccati-Bessel equation in the electro-
magnetic case) that is produced by the radially dependent
parameters of the medium. Recognizing this as one poten-
tial path for realizing a scatter-free shell, we now find the
conditions on �r, ��, and � that transform (5) into the
standard spherical Bessel equation in �r� a�. These con-
ditions are
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 �� � k1; (7)
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where k1 and ksh are constants to be determined later.
Under these conditions (5) becomes
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2 � n�n� 1��f � 0; (9)

which has the solution f�r� � bn�ksh�r� a��, where bn�x�
is a spherical Bessel or Hankel function of order n.

The total pressure field in all regions can now be ex-
pressed. For r > b, the spherical expansion of the incident
compressional plane wave gives

 pinc �
X1
n�0

Knjn�k0r�Pn�cos��; (10)

where Kn � in�2n� 1� and Pn�cos�� is the nth degree
Legendre polynomial. The scattered field is subject to the
radiation condition and, because of the azimuthal invari-
ance of the source and geometry, can be written as

 pscat �
X1
n�0

Anh
�1�
n �k0r�Pn�cos��; (11)

with h�1�n �k0r� the spherical Hankel function of the first
kind, and An are constants to be determined by the bound-
ary conditions. For a < r < b, the azimuthal invariance
means that the pressure is given by

FIG. 1. The problem domain, in which a compressional uni-
form plane wave propagating along the � � 0 direction is
incident on a material shell with inner radius a and outer radius
b.
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 psh �
X1
n�0

Bnjn�ksh�r� a��Pn�cos��; (12)

where the jn spherical Bessel function is used to ensure the
fields remain finite at r � a. This assumption will have to
be slightly modified below to handle subtleties associated
with the n � 0 harmonic. In the interior of the shell where
r < a, the pressure field is given by

 pint �
X1
n�0

Cnjn�k0r�Pn�cos��: (13)

The radial velocity (normal to all interfaces) is continuous
and therefore is needed to complete the problem. From (1)
we have

 vr � �
1

i!�r�0

@p
@r
; (14)

and therefore in the three regions the expressions for the
radial velocity are

 vinc
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0
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where the prime denotes differentiation with respect to the
entire argument of the Bessel functions. After exploiting
the orthogonality of Pn�cos��, continuity of p and vr at
r � b means that the expressions for An and Bn that must
be satisfied by a solution are

 Knjn�k0b� � Anh
�1�
n �k0b� � Bnjn�ksh�b� a��; (19)
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(20)

Solving these simultaneously for the scattered field coef-
ficients An yields
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�

k0j
0
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: (21)

The An can be made identically zero if two conditions are
met, namely,

 k0b � ksh�b� a�; (22)

 k0�r�b� � ksh: (23)

Physically, (22) says that the number of wavelengths in the
shell over a distance b� a must be the number of wave-
lengths in the background medium over a distance b. This
wavelength compression is exactly what is produced by
coordinate transformation cloaking [1]. Equation (23) sim-
ply says that the wave impedances must be appropriately
matched at the outer edge of the shell to eliminate reflec-
tions. When combined with (6), these expressions deter-
mine the two unknown constants in the specification of the
acoustic cloaking shell, namely, k1 � b�1�b� a� and
ksh � b�b� a��1k0. A complete material shell specifica-
tion that renders the interior acoustically invisible is thus

 �� � �� �
b� a
b

; (24)

 �r �
b� a
b

r2

�r� a�2
; (25)

 � �
�b� a�3

b3

r2

�r� a�2
: (26)

We must now ensure that this solution yields meaningful

fields in the shell and interior regions. From the r � b
boundary conditions we have Bn � Kn, and thus continuity
of p and vr at the r � a interface give, with r! a and
using (24),

 Knjn�ksh�r� a�� � Cnjn�k0r�; (27)
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FIG. 2 (color online). The real part of the pressure field in the
r� � plane of the problem domain computed from the series
solution. The plane wave is incident from the left.
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b2�r� a�2

�b� a�2r2
Knj0n�ksh�r� a�� � Cnj0n�k0r�: (28)

Because of the �r� a�2 term from �r, the left hand side of
(28) is zero for all n, giving Cn � 0 and thus zero internal
fields from the continuity of vr. Physically, this is because
the radial mass density tends to infinity at the inner edge of
the shell which reduces all radial particle motion to zero.
Equation (26) is consistent with this solution except for the
n � 0 term for which j0�0� does not vanish. However, it
can be shown that C0 does vanish in the limit of the ideal
acoustic cloaking parameters by following an argument
employed by Ruan et al. [12] in analyzing the 2D electro-
magnetic cloak. We only need to modify the expressions
for the n � 0 fields (remember that scattering vanishes for
all higher order harmonics without any tricks) in the cloak-
ing shell by including the Hankel function solution that
was removed on account of its singularity at the origin. By
including this term, it is straightforward to show that C0

tends to zero as the shell approaches the ideal cloak.
Figure 2 shows the real part of the pressure field for the

incident plane wave in the entire domain of Fig. 1 com-
puted from the series solution. The real part is plotted so
that the individual phase fronts are visible. As for the 2D
[13] and 3D [7] electromagnetic solutions, the cloaking
shell smoothly bends the phase fronts around the interior
with no scattering in any direction, including the forward
direction.

Thus the material specifications in (24)–(26) are analyti-
cally an ideal 3D acoustic cloak that excludes all incident
fields from the interior of the shell and does not scatter in
any direction. We note that, because the same limiting
argument employed in [12] is needed here, the n � 0
scattered fields may decrease slowly as the ideal cloak
parameters are approached. It is also interesting to note
that the ideal 3D acoustic cloaking parameters (24)–(26)
are similar in structure to the 2D electromagnetic and 2D
acoustic [6] parameters in that they contain singularities at
the interior edge of the cloak. This is in contrast to the 3D
electromagnetic cloak [1], which does not contain singu-
larities and for which scattering analysis does not require
limiting arguments to show that the scattering is identically
zero [7]. This is because the 2D electromagnetic, 2D
acoustic, and 3D acoustic cases directly involve solutions
of the Helmholtz equation and therefore Bessel functions
and spherical Bessel functions that do not all go to zero at
the origin. The 3D electromagnetic case involves Riccati-
Bessel functions that do all go to zero at the origin.

Physical realization of the mass anisotropy needed for
such an acoustic cloak will require some type of engi-
neered material. We note that significant progress has

been made in theoretical and experimental acoustic meta-
materials [14,15]. Specifically, Milton et al. [5] describe
conceptually how anisotropic effective mass can be
achieved with spring loaded masses, and Torrent and
Sanchez-Dehesa [10] have shown how effective density
and bulk modulus can be controlled in an acoustic meta-
material by embedding solid inclusions in a fluid matrix.
There is thus some hope that such an acoustic cloak could
be physically realized. Because the strong limits on wave
velocity and thus causal dispersion relations for electro-
magnetic materials do not apply to acoustic materials,
certain properties, such as a wide bandwidth, may be easier
to realize in practice for an acoustic cloak. The existence of
this 3D cloaking shell indicates that related reflectionless
solutions may also exist for other wave systems that are not
isomorphic with electromagnetics.

Note added.—Chen and Chan [16] recently reported the
same material specifications for a 3D spherical acoustic
cloaking shell through a different approach that relies on
the isomorphism between the acoustic equations and the
electric conductivity equation.
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