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Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons
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We study theoretically electromagnetic modes guided by metallic wedges at telecom wavelengths.
These modes are found to exhibit superior confinement while showing similar propagation loss as
compared to other subwavelength guiding configurations. It is also shown that mode focusing can be
realized by gradual modification of the wedge geometry along the mode propagation direction.
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Downscaling optical circuits remains a major issue in
micro and nanotechnology. The realization of subwave-
length guiding structures is a key factor for miniaturiza-
tion, because these components would permit denser
waveguide packaging without crosstalk, and lower wave-
guide bending loss. Surface plasmon polaritons (SPPs)
sustained by metallic structures are one of the most prom-
ising approaches to achieve modal sizes smaller than the
wavelength. Various geometries have been proposed to
fulfill this goal [1-3]. The main design difficulty is finding
structures that support electromagnetic fields with small
modal size while keeping a high propagation length.
Channel plasmon polaritons (CPPs) [4] supported by
V-shaped metallic grooves fulfill these requisites to a
certain extent and devices based upon them have been
experimentally demonstrated [5] at telecommunication
wavelengths. CPP modes present relatively low losses
when operating very close to modal cutoff, but their modal
size is in this case larger than expected [6].

In this Letter we study the modes supported by a metal-
lic wedge [termed wedge plasmon polaritons (WPPs)]. It is
found that WPPs, while showing significantly smaller mo-
dal size than CPPs, exhibit similar propagation length as
CPPs. We also suggest how a plane SPP propagating along
a flat surface can be coupled to a tightly confined WPP
mode by using a gradual deformation of the surface profile.

The basic structure studied here is a metallic wedge
surrounded by vacuum. It has an infinitely long edge,
which is the propagation direction (Z axis) for the sup-
ported electromagnetic modes (the edge is rounded with
radius of curvature r). The wedge angle is denoted as ¢.
We consider both wedges truncated at a certain height y =
h [as shown in the inset of Fig. 1(b)], and nontruncated
wedges (h — o0). The modes corresponding to nontrun-
cated wedges will be named WPP(c0). The considered
metal is gold, which is represented by a Drude-Lorentz
type dielectric function [7]. The size of the considered
structures is sufficiently large so as to use bulk dielectric
functions and neglect additional damping due to electron
scattering at the metal surface. The effective index model
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allows one to argue that a metallic wedge sustains modes
that are localized close to its edge and propagate along it,
but numerical simulations are needed to determine accu-
rately the modal characteristics. The results presented in
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FIG. 1 (color online). (a) WPP dispersion relation. Black thick
line, SPP mode on a flat surface; red or gray line (squares),
WPP(c0) mode supported by a nontruncated wedge. Insets: time-
averaged electric field of WPP(o0) mode at wavelengths A =
0.6 um and A = 1.6 um. The lateral size of the insets is
0.5 pwm. (b) Modal size (red or gray dashed line) and propaga-
tion length (black solid line) of WPP(o0) mode as a function of A.
Inset: diagram of the truncated wedge.
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this Letter have been obtained with the multiple multipole
(MMP) method [8] and the finite difference time domain
(FDTD) technique [9]. We used MMP for the structures
with cylindrical symmetry and FDTD for the structures
with a more complex geometry. Very good agreement
between the results of both methods is obtained.

After an early analysis of WPPs in the electrostatic
approximation [10], these modes were recently studied
by Pile et al. [11] in the visible regime, where the mode
propagation length is very short. In our Letter the emphasis
is on telecom wavelengths where losses are much lower
(see also [14]). Figure 1 displays the modal behavior of
WPP(o0) modes for a wedge with angle ¢ = 20° and
radius of curvature of the edge » = 10 nm. Panel (a) shows
the dispersion relation (red or gray line) of the fundamental
mode. As corresponds to a nonradiative mode, it lies out-
side the shaded area bounded by the dispersion relation of a
SPP mode. The mode has no cutoff wavelength. The modal
shape for wavelengths at both ends of the considered
spectrum is plotted in the insets. Modal size and propaga-
tion length (I = [2Im(k,)]"!, k. being the modal wave
vector) as a function of wavelength are presented in
panel (b) (left and right axes, respectively). Here the modal
size is defined as the transverse separation between the
locations where the electric field amplitude of the mode
has fallen to one tenth of its maximum value. The factor
1/10 in this definition is somehow arbitrary but it is
sufficient for our mode characterization purposes. The
modal size (red or gray dashed line) grows as A increases,
but subwavelength guiding is achieved in the whole re-
gime. As mentioned above, the propagation length (black
line) is very short in the visible region of the spectrum ( =
0.5 umat A = 0.6 wm), but it rises to about 40 wm in the
telecom regime.

Wedge and channel plasmon polaritons are now com-
pared at A = 1.5 um. In order to have a meaningful com-
parison, we consider exactly the same geometry for both
structures, simply exchanging the metallic and vacuum
regions (Fig. 2). The angle and radius of curvature are
the same as above, but we now compute more realistic

FIG. 2 (color online). Transverse electric field of (a) CPP
mode, and (b) WPP mode, both at A = 1.5 um. The geometry
of both structures is identical (see main text) exchanging the
metallic and vacuum regions. The panel’s lateral size is 2 um.

structures with finite height (& = 1.2 um, a typical value
for experiments with CPPs). The corners where the flat
horizontal surface meets the triangular structure are also
rounded (with a radius of curvature R = 100 nm, also
typical for experimental CPPs). The transverse electric
field of both CPP and WPP modes is plotted in Fig. 2.
The modal size of the WPP is 0.46 um, significantly
smaller than that of the CPP (2.5 wm). This is mainly
due to the fact that the CPP mode is hybridized with wedge
modes supported by the edges at both sides of the groove
[6]. These edges correspond to wedges with a large angle
(¢’ = 100°) and radius of curvature (R = 100 nm), and
for which the corresponding WPP modal sizes are larger,
as will be shown below. Despite the different modal sizes,
the computed propagation lengths are quite similar for both
modes: 37 um for the WPP, and 34 pum for the CPP. It is
worth mentioning that the CPP mode is very close to cutoff
and for a height 4 = 1 pum the mode is no longer guided,
whereas the WPP is guided whenever the height verifies
h>h,~02 pm.

Let us now consider the dependence of the modal char-
acteristics of WPPs as a function of the most relevant
geometric parameters. The following data correspond to
A =15 um. The dependence with the height /4 of the
wedge is summarized in panels (a) and (b) of Fig. 3,
whereas the dependence with the angle ¢ of a WPP(c0)
is presented in the lower panels (c¢) and (d). The modal
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FIG. 3 (color online). WPP modal characteristics as a function
of wedge height or angle. In (a) and (b) the height is varied and
the wedge angle is constant, ¢¢ = 20°. In (c) and (d) the wedge
angle is varied (the wedge is not truncated). The radius of
curvature is r = 10 nm in all cases. (a) Solid line, effective
index of WPP mode. (b) Red or gray dashed line, modal size
of WPP; solid line, propagation length of WPP. (c) Solid line,
effective index of WPP(c0) mode. (d) Red or gray dashed line,
modal size of WPP(c0); solid line, propagation length of
WPP().
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effective index n.; (i.e., modal wave vector divided by
wave vector in vacuum) is displayed in panel (a). As h
decreases, n.g tends to the effective index of a SPP on flat
surface (for h < h,, n.s reaches the effective index of a
SPP and the mode is no longer guided). Note that a low
effective index is equivalent to a more extended field, as
confirmed in panel (b) where the modal size is plotted (red
or gray dashed line). The propagation length is also shown
in panel (b) (black line), increasing when the cutoff height
is approached. The behavior of the WPP(o0) modal char-
acteristics as the angle ¢ increases is reminiscent to what
occurs when the height / decreases. There is, however, a
major difference: there is no critical angle above which the
mode is no longer guided. As ¢ is increased towards 180°,
propagation length, n.¢, and modal size tend to those of a
SPP on a flat surface. Modal size rapidly increases as the
angle grows, but our numerical simulations show wave-
guiding no matter how large the angle is (whenever ¢ <
180°).

Up to this point we have been concerned only with
waveguiding, finding that WPPs display good confinement
and propagation length. In the rest of the paper we present
strategies for WPP < SPP conversion. A device with this
functionality should convert the shape and size of a WPP to
that of a SPP. The task can be also understood as focusing
an SPP to a WPP (if the time arrow is reversed). Since SPPs
on flat surfaces have infinite transverse extension, the main
challenge is the large modal mismatch. Here, conversion
shall be achieved by deforming the metal surface from a
wedge geometry to a flat geometry in a continuous way
along the mode propagation direction (Z axis). In other
words, the wedge height or angle become functions of the
z coordinate, h(z), ¢(z). It is clear from Figs. 3(a) and 3(c)
that, as the height A shrinks or the angle ¢ increases, the
effective index is reduced, leading to a growth of the modal
size. If this conversion is performed slowly, radiation and
reflection during the process should be low. In order to
verify this scenario we have performed three-dimensional
(3D) FDTD simulations for structures with constant wedge
angle (¢ = 20°) and various h(z) profiles. The tight con-
finement of the mode requires very fine meshes (we used a
mesh of 10 nm). The simulation domain is a parallelepiped
surrounded by perfect matched layers (PMLs). The simu-
lations are performed at A = 1.5 um in continuous-wave
mode. All structures have an initial section with constant
wedge height. The input WPP mode is excited by a source
(located at z = 0.5 um in front of the wedge and buried
inside a cavity to prevent direct illumination from the
source to the conversion device). After a short transient
(z <z, =2 pm), the field settles down to a propagating
WPP mode. We first simulate a set of test structures
(structures I) all of them with constant height, 7 €
(0.2,0.48) wm. These computations will allow evaluation
of losses in later structures, and served as a test of the
FDTD simulations (comparison with MMP results is very

good). After the initial transient, the found exponential
modal decay is solely due to absorption in the metal (and
not in the PMLs). Modal reflection at the domain boundary
is very small (reflected power less than 0.1%). Thus, for
structures I, the field computed at z = 9.0 wm (shortly
before the simulation domain boundary) is a pure WPP
mode without radiation. Structure II has 4 = 0.48 um for
7<3.9 pum, and then the wedge height decreases linearly
to zero along a distance Az = 3.3 um [A(z) is zero beyond
this point]. Figures 4(a) and 4(b) show longitudinal cross
sections [ZY plane (side view), and ZX plane at a height
h = 0.3 pwm (top view), respectively] of the electric field
amplitude. The mode runs from left to right. From
panels (a) and (b) reflection seems to be very low. As the
wedge height decreases, the modal size expands. This is
observed in panels (c) to (f), which display the correspond-
ing transverse cross sections (XY planes at various
z coordinates). For comparison, we have considered
structure III, which is identical to structure II for z <
4.6 um but with a wedge height abruptly becoming zero
after this point [side and top view in panels (g) and (h),
respectively]. In this case we observe strong reflection at
the discontinuity. We now want to evaluate non-Ohmic
losses during conversion in structure II. To this end, for
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FIG. 4 (color online). Electric field amplitude in the WPP —
SPP transition (geometries are detailed in the main text). (a) and
(b) longitudinal cross sections for structure II [dashed line in (a)
is the location of longitudinal section (b)]. (c), (d), (e), and
(f) transverse cross sections (XY plane, at various z coordinates)
for structure II [dashed lines in (b) show the position of these
transverse cross sections]. (g) and (h) longitudinal cross sections
for structure III. The Cartesian axes are shown in Fig. 1(b). The
wavelength is A = 1.5 pum. The size of all panels along X and Y
directions is 1.4 um.
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FIG. 5 (color online).

Focusing of the WPP(o0) modal field as the wedge angle ¢ is slowly decreased from ¢ = 180° (SPP mode on

a flat surface) to ¢ = 20°. The panels display the transverse electric field at a wavelength of 1.5 pwm. The lateral size of the panels is
2 wum. The radius of curvature of the tip is » = 10 nm. The color scale or shading of the various panels is not the same.

every transverse cross section z < z, = 5.8 um (z,. being
the coordinate corresponding to the modal cutoff height
h.), we have computed the overlap [12] of the field in
structure II at z, and the field of a WPP mode with the
height of structure II at z (these fields are available from
our computations of structures I). Whenever WPP reflec-
tion occurs, the overlap integral as a function of z displays
ripples due to the formation of a standing wave. From this
modulation we estimate that reflection is about 0.2% (a
similar analysis for structure III gives a value of 20%).
Additionally, when power is radiated, the value of the
overlap is reduced because, due to orthogonality, radiation
modes are projected out when the overlap is computed. The
results of this test (once absorption losses are taken into
account) show that the power guided by the WPP is pre-
served for z, <z <z, thus confirming that very little
power is radiated after the transient (less than 5%). We
can thus conclude that structure II achieves its design
purpose up to the coordinate z = z.. For z > z. no WPP
mode exists and the field extends outside the simulation
window. However, quantitative comparison of the field
computed for structure II in the transverse cross section
at z = 9 um and that of a pure SPP shows that the field is
mainly a SPP at this coordinate. Thus, the power through
this cross section (which amounts to 29% of the input
power) is essentially carried by SPPs. This is a lower bound
estimation for the WPP — SPP conversion as the finite size
of the simulation domain impedes the calculation of the
total power coupled to SPPs propagating in all directions in
the horizontal plane.

In structure II, WPP modes do not exist for h < h,.
Moreover, such a device converts a WPP mode to SPPs
propagating with an in-plane angular spectrum. For both
reasons the coupling of WPP to Z-propagating SPP may be
reduced. These restrictions should not apply for WPP(c0)
modes when the angle is the control parameter along the
Z axis. Therefore, we expect a better performance for a
structure where the wedge angle ¢ is continuously varied
from a flat surface (¢ = 180°) to a wedge with ¢ = 20°.
Three-dimensional simulations of this case are inherently
very difficult because, by construction, the modal size
grows increasingly fast as ¢ — 180°. Thus, the mode
cannot fit in the simulation domain, which is constrained

by the available computer memory. Nevertheless, the idea
is illustrated in Fig. 5, that plots the transverse electric field
for decreasing wedge angles (2D MMP simulations). Note
how the field is concentrated close to the edge. The pre-
viously shown FDTD computations and other studies [13],
lead us to expect that focusing (without radiation or reflec-
tion) can be achieved in a short length also in this case.

In conclusion, we have shown that WPPs are good
subwavelength guiding structures. At telecom wave-
lengths, their guiding properties were found superior to
the ones offered by CPPs. We have also explored the
possibility of light focusing via the geometry-driven con-
version of a standard SPP into a tightly confined WPP.
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Note added.—The work of Yan and Qiu [14] was pub-
lished during the review process.
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