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We present a method for determining the free-energy dependence on a selected number of collective
variables using an adaptive bias. The formalism provides a unified description which has metadynamics
and canonical sampling as limiting cases. Convergence and errors can be rigorously and easily controlled.
The parameters of the simulation can be tuned so as to focus the computational effort only on the
physically relevant regions of the order parameter space. The algorithm is tested on the reconstruction of
an alanine dipeptide free-energy landscape.
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Computing free-energy differences is of crucial impor-
tance in molecular dynamics (MD) and Monte Carlo (MC)
simulations. Whenever it is possible to define a few col-
lective variables (CVs) that provide a coarse-grained de-
scription of the slow modes [1,2], it is also of great
relevance to compute the associated free-energy surface
(FES). In order to draw such a surface, a straightforward
approach is often not possible due to high barriers or other
sampling bottlenecks. A standard strategy for overcoming
this problem is to introduce an external biasing potential
that forces the system to explore regions of high free
energy [3]. A major progress has been the recent introduc-
tion of adaptive nonequilibrium methods [4–7]. In all these
methods, the simulation history is used to enhance the
sampling speed. In a MC run, this can be done by varying
the MC acceptance probability every time a new configu-
ration is visited [4], while in MD, a time-dependent bias
can be added either to the force [5] or to the potential [6,7].

We shall focus here on metadynamics [6], which has
proven its effectiveness in a variety of contexts [8–18]. In
metadynamics, the system evolution is biased by a history-
dependent potential that is constructed as the sum of
Gaussian functions [19] deposited along the trajectory in
the CVs space. After a transient, the bias potential com-
pensates the underlying FES and provides an estimate of its
dependence on the CVs. A formal justification of this
procedure has been given in Ref. [20]. In spite of its
success, there is a need to improve metadynamics in sev-
eral respects. First of all, it is often difficult to decide when
to terminate a metadynamics run. In fact, in a single run,
the free energy does not converge to a definite value but
fluctuates around the correct result, leading to an average
error which is proportional to the square root of the bias
potential deposition rate [20,21]. Reducing this rate im-
plies increasing the time required to fill the FES.
Furthermore, in practical application, continuing a run
carries the risk that the system is irreversibly pushed in
regions of configurational space which are not physically

relevant. These issues have already been recognized, and
different ad-hoc solutions have been proposed to alleviate
these problems [8–10,22–24].

In this Letter, inspired by the self-healing umbrella
sampling method [7], we substantially improve metady-
namics such that we obtain an estimate of the FES that
converges to the exact result in the long time limit.
Contrary to ordinary metadynamics, our approach offers
the possibility of controlling the regions of FES that are
physically meaningful to explore. Besides being highly
effective and controllable, this new method provides a
unified framework whose limiting cases are standard meta-
dynamics and nonbiased standard sampling. We dub this
new scheme well-tempered metadynamics.

Let us consider a system described by a set of micro-
scopic coordinates q and a potential energy U�q�, evolving
under the action of a dynamics (e.g., MD or MC) whose
equilibrium distribution is canonical at the temperature T.
We want to determine the free-energy dependence on a set
of collective variable s�q�. The FES can be written within
an immaterial constant as

 F�s� � �T lim
t!1

lnN�s; t�; (1)

where N�s; t� �
R
t
0 �s;s�t0�dt

0 is the histogram of the vari-
able s obtained from an unbiased simulation. By construc-
tion,N�s; 0� � 0 and its time derivative _N�s; t� � �s;s�t�. To
accelerate sampling, we bias the dynamics by adding the
history-dependent potential

 V�s; t� � �T ln
�
1�

!N�s; t�
�T

�
; (2)

where ! has the dimension of an energy rate, �T is a
temperature, and N�s; t� comes from the biased simulation.
Since V is a monotonic function of N, such a bias potential
disfavors the more frequently visited configurations. A
crucial quantity is the rate at which the potential is modi-
fied. In particular, slower variation rates lead to a dynamics
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of the microscopic variables q which is closer to thermo-
dynamic equilibrium. From Eq. (2), it follows that the rate
with which V�s; t� changes is

 

_V�s; t� �
!�T�s;s�t�

�T �!N�s; t�
� !e��V�s;t�=�T��s;s�t�: (3)

The connection with metadynamics is evident if we exam-
ine Eq. (3) and replace �s;s�t� with a finite width Gaussian.
Therefore, our scheme can easily be implemented in any
metadynamics code by rescaling the height of the
Gaussians according to Eq. (3). Using the notation in
Ref. [21], the height of each Gaussian is determined by
w � !e��V�s;t�=�T��G, where �G is the time interval at
which Gaussians are deposited. Thus, ! represents the
initial bias deposition rate.

Two important properties need to be underlined. The
first is that since the histogram N�s; t� grows linearly with
simulation time, the rate _V�s; t� tends to zero as / 1=t. This
is the simplest, if possibly not the optimal [25], way to have
a rate decrease fast enough for the bias eventually to
converge, yet slow enough for the final result not to depend
on the initial condition V�s; 0�. Similar arguments have
been used in the field of stochastic optimization [26,27].
The second property is that _V is not uniform in the s space
since at a given point, the rate is inversely proportional to
the time already spent there. This latter feature distin-
guishes our approach from others in which 1=t strategy
has also been suggested either explicitly [28] or implicitly
[7].

For large times, V�s; t� varies so slowly that one can
assume that the q’s reach equilibrium, the probability
distribution becomes P�s; t�ds / exp��F�s��V�s;t�T �ds and
one has

 

_V�s; t� � !e��V�s;t�=�T�P�s; t�

� !e��V�s;t�=�T� e��F�s��V�s;t��=TR
dse��F�s��V�s;t��=T

: (4)

This implies that V�s; t! 1� � � �T
�T�T F�s�, modulo a

constant. Thus, at variance with metadynamics and other
methods, the bias does not fully compensate F�s�; rather,
one has that F�s� � V�s� � T

T��T F�s� leading to the fol-
lowing distribution of s:

 P�s; t! 1�ds / e��F�s�=�T��T��ds: (5)

In practice, using Eq. (2), the FES can be estimated as

 

~F�s; t� � �
T � �T

�T
V�s; t�

� ��T ��T� ln
�
1�

!N�s; t�
�T

�
: (6)

Let us examine the two limiting cases, �T � 0 and
�T ! 1. For �T � 0, the bias is equal to zero and
Eq. (6) reduces to Eq. (1). More interesting is the �T !

1 limit. In this case, the deposition rate is constant, and
from Eq. (6), one finds that ~F�s; t� � �V�s; t� and the
standard metadynamics algorithm is recovered. Note how-
ever that the limit �T ! 1 is singular: if we first let �T !
1, the convergence of V�s; t� for t! 1 cannot be dem-
onstrated by means of Eq. (4). This is a reflection of the
already noted drawback of metadynamics that in a single
simulation, the bias does not converge but oscillates around
the correct F�s� value. In intermediate cases, the calculated
FES is the one corresponding to the target temperature T,
with the transverse degrees of freedom correctly sampled.
However, the s probability distribution is altered and cor-
responds to an enhanced temperature T ��T. It must be
stressed that this result has been obtained without having to
assume adiabatic separation between s and the other var-
iables as in Refs. [29–31].

Much is to be gained computationally by well-tempered
metadynamics. By tuning �T, one can increase barrier
crossing and facilitate the exploration in the CVs space.
Furthermore, using a finite value of �T, one automatically
limits the exploration of the FES region to an energy range
of the order T ��T. Hence, the exploration of the FES can
be limited to the physically interesting regions of s. Longer
simulation time results in improved statistical accuracy in
the relevant regions. The risk of overfilling is avoided, and
optimal use is made of the computer time. Deciding when
to stop the run is now simple, and post-processing [8,22] is
not necessary.

FIG. 1 (color). Panels (a–c) Green dots represent 6 ns long
trajectories in the (�, �) space for different choices of �T
[600 K (a), 1800 K (b), and 4200 K (c)]. The underlying color
map (kcal mol�1) shows the reference free-energy landscape.
Panel (d) Estimate of the free-energy difference between the two
metastable minima C7ax (70,�70) and C7eq (� 83, 74) as a func-
tion of the simulation time, as obtained from the same trajecto-
ries.
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As an illustration, we study the FES of alanine dipeptide
in vacuum as a function of the backbone dihedral angles
(�, �). This surface has been well studied and is known to
exhibit two minima C7eq and C7ax separated by a barrier of
� 9 kcal mol�1 [32,33]. Since such a barrier cannot be
crossed with standard dynamics at room temperature, this
system has provided a testing ground for many sampling
schemes. The CHARMM27 [34] force field has been used in
ORAC MD code [35], and canonical sampling at a tempera-
ture of 300 K was achieved by means of the stochastic
thermostat in Ref. [36]. The Gaussian width was set to
20 degrees, and the deposition interval was 120 fs with a
starting Gaussian height of 0:287 kcal mol�1, which cor-
responds to a deposition rate ! � 2:4 cal mol�1 fs�1.

We calculated a reference F��;�� using standard um-
brella sampling which is in good agreement with previous
studies. On this surface, we superimpose three different
trajectories (see Fig. 1) started from the same initial con-
ditions [C7eq (�83, 74)], but with three different choices of
�T (600 K, 1800 K, and 4200 K). In all three cases, the
secondary metastable state C7ax � �70;�70� was fre-
quently visited. It is worth noting that, as discussed earlier,
by increasing �T, larger and larger regions were explored.
In order to demonstrate how the method converges, for the
three mentioned cases, in Fig. 1 we also show the time
evolution of � ~F�t� � ~F�C7ax; t� � ~F�C7eq; t�, i.e., the esti-
mated free-energy difference between the two minima.
� ~F�t� converges to the reference value (�F �
2:2 kcal mol�1) in all three trajectories. At variance with
standard metadynamics, the time derivative of the bias
potential tends to zero, and the fluctuations around the
correct value are progressively damped. All three simula-
tions provide an accurate estimate of the free-energy dif-
ference within a few nanoseconds, even in the lowest �T
case where the lower number of barrier crossing events
leads to a jumpier � ~F evolution.

As a measure of the error of ~F��;�� in the relevant
regions, we define

 ��t� �
�

1

A

Z
�
�F��;�� � ~F��;�; t� � C�t��2d�d�

�
1=2

(7)

where � is the region in dihedral space such that
F��;�� � F�C7eq�< 10 kcal, and A is its area. � is de-
fined to include all the minima and all the transition states.
The value of C�t� is chosen so as to align the averages of F
and ~F over �. It is seen that after an initial transient period,
h��t�i converges to zero as k=

��
t
p

. Such behavior is shown in
Fig. 2(a) where h��t�i

��
t
p

is plotted against the simulation
time for three values of �T. This is clearly at variance with
standard metadynamics in which the error does not to
converge to zero during a single simulation [20,21]. The
behavior of the present scheme is consistent with an error
analysis done on a simulation performed at a constant
bias. In Fig. 2(b), we study the dependence of k �
limt!1h��t�i

��
t
p

on �T as a way of optimizing the choice
of �T. In this case, the optimal choice is close to �T �
1200 K resulting in a sampling temperature for the collec-
tive variables of T � �T � 1500 K, which is of the order
of magnitude of the barrier height. Its actual value may
depend on the s relaxation times and on the area one wishes
to explore.

We discuss now the role of !, the initial deposition rate
which we relate to the time constant �B �

�T
! that sets the

time scale for the bias evolution. While in the long time
limit �B is irrelevant, it could affect the transient regime in
a nontrivial way. At constant �T, a small �B implies a high
initial deposition rate, thus leading to rapid filling of the
wells. However, if �B is too small relative to the time
necessary to properly average out the transverse degrees
of freedom, the large fluctuations in the initial FES recon-
struction need a longer time to be recovered.

This effect is conveniently investigated by introducing
an artificial model based on the alanine dipeptide FES. We
model the dynamics on the two-dimensional space (�, �)
with a high-friction Langevin equation driven by the free-
energy surface F��;�� and the diffusion coefficients D�,
D� determined from the atomistic simulations. We shall
apply our scheme to calculate the one-dimensional projec-
tion F���, using a one-dimensional bias on �. In such a
case, the relaxation speed of the transverse degree of free-
dom � can be tuned by changing D�, thus mimicking a
situation in which the transverse degrees of freedom are
either fast or slow. As can be seen in Fig. 3, in the fast case,
the orthogonal degree of freedom is rapidly averaged out,
resulting in a Markovian dynamics on �, and a small �B is
the best choice. In the slow case, the effective dynamics of
� is strongly non-Markovian due to coupling with �, and
a small �B is not the best choice since it results in an
increase of the transient time. However, it is worth noting
that the method is robust and in the range of reported cases,
which spans 2 orders of magnitude in �B and D�, the
calculation converged to the same results on approximately
the same time scale.

FIG. 2. Panel (a) Time evolution of h��t�i
��
t
p

for different
choices of �T. h��t�i is the error as defined in Eq. (7), averaged
over an ensemble of 100 independent atomistic simulations
starting from C7eq. Panel (b) Dependence of k (see text for
definition) on �T, as estimated from 6 ns long trajectories.
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In conclusion, well-tempered metadynamics solves the
convergence problems of metadynamics and allows the
computational effort to be focused on the physically rele-
vant regions of the conformational space. The latter prop-
erty makes it possible to use adaptive-bias methods in
higher dimensionality cases, thus paving the way for the
study of complex systems where it is difficult to select
a priori a very small number of relevant degrees of free-
dom. The proposed approach can easily be applied to
generalizations of metadynamics based on multiple repli-
cas [15,37,38], and can be extended to the Wang-Landau
algorithm [4].

The authors acknowledge Davide Branduardi and
Francesco L. Gervasio for useful discussions.
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[30] L. Rosso, P. Mináry, Z. Zhu, and M. E. Tuckerman,
J. Chem. Phys. 116, 4389 (2002).

[31] L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett.
426, 168 (2006).

[32] L. Maragliano, A. Fischer, E. Vanden-Eijnden, and
G. Ciccotti, J. Chem. Phys. 125, 024106 (2006).

[33] D. Branduardi, F. L. Gervasio, and M. Parrinello, J. Chem.
Phys. 126, 054103 (2007).

[34] J. A. D. MacKerell, D. Bashford, M. Bellott, R. L.
Dunbrack, Jr., J. D. Evanseck, M. J. Field, S. Fischer, J.
Gao, H. Guo, and S. Ha et al., J. Phys. Chem. B 102, 3586
(1998).

[35] P. Procacci, T. A. Darden, E. Paci, and M. Marchi,
J. Comput. Chem. 18, 1848 (1997).

[36] G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys.
126, 014101 (2007).

[37] P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, and
M. Parrinello, J. Phys. Chem. B 110, 3533 (2006).

[38] S. Piana and A. Laio, J. Phys. Chem. B 111, 4553 (2007).

FIG. 3 (color online). Time evolution of the average error
h��t�i for different values of �B and D�, where D� �
12:3 deg2 fs�1 and �T � 1200 K. The error is averaged over
an ensemble of 1000 independent Langevin simulations starting
from C7eq.
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