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We derive new duality relations that link the energy of configurations associated with a class of soft pair
potentials to the corresponding energy of the dual (Fourier-transformed) potential. We apply them by
showing how information about the classical ground states of short-ranged potentials can be used to draw
new conclusions about the nature of the ground states of long-ranged potentials and vice versa. They also
lead to bounds on the 7 = 0 system energies in density intervals of phase coexistence, the identification of
a one-dimensional system that exhibits an infinite number of ‘“phase transitions,” and a conjecture
regarding the ground states of purely repulsive monotonic potentials.
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While classical ground states are readily produced by
slowly freezing liquids in experiments and computer simu-
lations, our theoretical understanding of them is far from
complete. Much of the progress to rigorously identify
ground states for given interactions has been for lattice
models, primarily in one dimension [1]. The solutions in
d-dimensional Euclidean space R¢Y for d =2 are con-
siderably more challenging. Recently, a ‘“collective-
coordinate’” approach has been used to study and ascertain
ground states in R? and R? for a class of interactions [2,3].
A surprising conclusion of Ref. [2] is that there exist non-
trivial disordered ground states without any long-range
order [4,5], in addition to the expected periodic ones.
Despite these advances, new theoretical tools are required
to make further progress.

Here we derive new duality relations for a class of soft
pair potentials that can be applied to classical ground
states. We consider soft interactions since they are easier
to treat theoretically and possess great importance in soft-
matter systems, such as colloids, microemulsions, and
polymers [6—8]. The duality relations link the energy of
configurations for a pair potential v(r) to that for the dual
(Fourier-transformed) potential. Applications of the dual-
ity relations lead to some novel results.

For a configuration r¥ =r|,r,, ..., ry of N > 1 parti-
cles in volume V C R? with stable pairwise interactions
91, U(N) = 43—y j—v(ry) is twice the total potential
energy per particle [plus the “self-energy” v(0)], where
v(r) is a radial pair potential function and r;; = |r; — r;].
A classical ground-state configuration is one that mini-
mizes U(r"). Since we allow for disordered ground states,
we consider the general ensemble setting. The ensemble
average of U for a statistically homogeneous and isotropic
system in the thermodynamic limit is given by
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where p = limy_e y—N/V is the number density and
g-(r) is the pair correlation function. It is crucial to in-
troduce the total correlation function A(r) = g,(r) — 1,
which decays to zero for a disordered system. We consider
those stable radial pair potentials v(r) that are bounded and
absolutely integrable and call such functions admissible.
Thus, the corresponding Fourier transform #(k) in d di-
mensions [10] at wave number k exists, which we also take
to be admissible, and

UOM) = v(r = 0) + piik = 0) + p fRd v(r)h(r)dr.
2

Lemma. For any ergodic configuration [5] in R?, the
following duality relation holds:

1 o~
/Rdv(r)h(r)dr—w fw SRk dk. (3

If such a configuration is a ground state for v(r), then the
left and right sides of (3) are minimized.

Proof. Identity (3) follows from Parseval’s theorem,
assuming that /A(k) or the structure factor S(k) = 1+
ph(k) exists. From (2) and (3), we see that both sides of
(3) are minimized for any ground-state structure, although
the duality relation applies to general structures [11].

Remark. Whereas h(r) always characterizes a point
pattern, its Fourier transform /(k) is generally not the total
correlation function of a point pattern in reciprocal space.
It is when h(r) characterizes a Bravais lattice A [12] that
h(k) is the total correlation function of a point pattern,
namely, the reciprocal Bravais lattice A.
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Theorem 1. If an admissible pair potential v(r) has a
Bravais lattice A ground-state structure at number density
p, then we have the following duality relation for the
minimum U, of U:

v(r=0) + Zlv(r) = pv(k=0) + pzl v(k), (4

reA kEA

where the prime on the sum denotes the zero vector should
be omitted, A denotes the reciprocal Bravais lattice [13],
and ¥(k) is the dual pair potential, which automatically
satisfies the stability condition and thus is admissible.
Moreover, the minimum U,,;, of U for any ground-state
structure of the dual potential ©(k) is bounded from above
by the corresponding real-space minimized quantity U,
or, equivalently, the right side of (4), i.e.,

Umin = Umin = Pf’(k = O) + PZI i)(k) )
kEA

Whenever the reciprocal lattice A at reciprocal lattice
density p = p~'(27m)"? is a ground state of ¥(k), the
inequality in (5) becomes an equality. On the other hand,
if an admissible dual potential #(k) has a Bravais lattice A
at number density p, then

Umin = Umin = ﬁU(V = 0) + ﬁ Z/ U(r): (6)
reA
where equality is achieved when the real-space ground
state is the lattice A reciprocal to A.

Proof. The radially averaged total correlation function
for a Bravais lattice, which we now assume to be a
ground state, is given by h(r)=_15>,_,Z,8(r—r,)— 1,
where s,(r) is the surface area of a d-dimensional sphere of
radius r, Z,, is the coordination number (number of points)
at the radial distance r,, and &(r) is a radial Dirac delta
function. Substitution of this expression and the corre-
sponding one for #(k) into (3) yields wv(r=0)+
Zn=1ZnU(rn) = Pﬁ(k = 0) + pZnZIZnﬁ(kn)’ where Zn
is the coordination number in the reciprocal lattice at the
radial distance k,. Recognizing that Y ,_, Z,v(r,) =
Sheeav(r) (eading to Upyy) and Y, Z,d(k,) =
Z/ke ;0(k) yields the duality relation (4). However, there
may be non-Bravais lattice structures that have lower en-
ergy than the reciprocal lattice so that U, =< Upi,. To
prove this point, note that U for any non-Bravais lattice
must obey the inequality U,;, = U. However, because the
Fourier transform A(k) generally does not correspond to a
point pattern in reciprocal space (see Remark under the
Lemma), we cannot eliminate the possibilities that there
are non-Bravais lattices in reciprocal space with U lower
than U,,;,. Inequality (6) follows in the same manner as (5)
when the ground state of ©(k) is known to be a Bravais
lattice.

Remarks. (1) Whenever equality in relation (5) is
achieved, then a ground-state structure of the dual potential
v(k = r) evaluated at the real-space variable r is the
Bravais lattice A at density p = p~!(27)~9. (2) The

zero-vector contributions on both sides of (4) are crucial
in order to establish a link between the real- and reciprocal-
space ‘‘lattice’” sums indicated therein [5]. (3) We identify
below specific instances in which the strict inequalities
in (5) and (6) apply, including a theorem and a one-
dimensional system with unusual properties.

Theorem 2. Suppose that for admissible potentials there
exists a range of densities over which the ground states are
side by side coexistence of two distinct crystal structures
[14] whose parentage are two different Bravais lattices;
then the strict inequalities in (5) and (6) apply at any
density in this density-coexistence interval.

Proof. This follows immediately from the Maxwell
double-tangent construction in the U-p~! plane, which
ensures that U in the coexistence region at density p is
lower than either of the two Bravais lattices.

As we will see, the duality relations of Theorem 1 will
enable us to use information about ground states of short-
ranged potentials to draw new conclusions about the nature
of the ground states of long-ranged potentials and vice
versa. Moreover, inequalities (5) and (6) provide a compu-
tational tool to estimate ground-state energies or eliminate
candidate ground-state structures as obtained from anneal-
ing simulations. We will now examine the ground states of
several classes of admissible functions.

Admissible functions with compact support. Re-
cently, the ground states of a class of oscillating real-space
potentials v(r) as defined by the family of Fourier trans-
forms with compact support such that #(k) is positive for
0 = k< K and zero otherwise have been studied [2,3].
Clearly, #(k) is admissible. Siitd [3] showed that in R3
the corresponding real-space potential v(r), which oscil-
lates about zero, has the body-centered cubic (bcc) lattice
as its unique ground state at the real-space density p =
1/(8v/273) (with K = 1). Moreover, he showed that for
densities greater than 1/(8+/27°), the ground states are
degenerate such that the face-centered cubic (fcc), simple
hexagonal (sh), and simple cubic (sc) lattices are ground
states at and above the respective densities 1/(6+/37°),
V3/(16+/273), and 1/(8v/273).

Since all of the aforementioned ground states are
Bravais lattices, the duality relation (4) can be applied
here to infer the ground states of real-space potentials
with compact support. Specifically, application of the dual-
ity theorem in R? and Siitd’s results enables us to conclude
that for a potential v(r) that is positive for 0 = r < D and
zero otherwise, the fcc lattice (dual of the bcc lattice) is a
ground state at the density +/2 and the ground states are
degenerate such that the bce, sh, and sc lattices are ground
states at and below the respective densities (3 V3)/4,2//3,
and 1 (taking D = 1). Examples of such real-space poten-
tials, for which the ground states are not rigorously known,
include the “square-mound” potential [15] [v(r) = € >0
for 0 = r <1 and zero otherwise] and the ‘“overlap”
potential [10], equal to the intersection volume of two
d-dimensional spheres of diameter D whose centers are

020602-2



PRL 100, 020602 (2008)

PHYSICAL REVIEW LETTERS

week ending
18 JANUARY 2008

separated by a distance r divided by the volume of a
sphere, and thus has support in the interval [0, D). The
d-dimensional Fourier transforms of the square-mound
and overlap potentials are €29/2J, 1n(k)/ (k)42 and
207420(1 + d/2)J? 12(k/2)/k, respectively, with D = 1.
Figure 1 shows the real-space and dual potentials for these
examples in R*. The densities at which the aforementioned
lattices are ground states are easily understood by appeal-
ing to either the square-mound or overlap potential. The
fcc lattice is a ground state at the density +/2 because at this
value, where the nearest-neighbor (NN) distance is unity,
and lower densities, the energy is zero. At a slightly higher
density, each of the 12 nearest neighbors contributes an
amount € to the lattice energy. At densities lower than ~/2,
there are an uncountably infinite number of degenerate
ground states. This includes the bcc, sh, and sc lattices,
which join in as ground states at and below the respective
densities (3+/3)/4, 2/+/3, and 1, because those are the
threshold values at which these structures have lattice
energies that change discontinuously from some positive
value (determined by nearest neighbors only) to zero.
Moreover, any structure, periodic or not, in which the
NN distance is greater than unity is a ground state.

However, at densities corresponding to NN distances
that are less than unity, determination of the possible
ground-state structures is considerably more difficult. For
example, it has been argued in Ref. [7] (with good reason)
that real-space potentials whose Fourier transforms oscil-
late about zero will exhibit polymorphic crystal phases in
which the particles that comprise a cluster sit on top of each
other. The square-mound potential is a special case of this
class of potentials, and the fact that it is a simple piecewise
constant function allows for a rigorous analysis of the
clustered ground states for densities in which the NN
distances are less than the distance at which the disconti-
nuity in v(r) occurs [5].

Nonnegative admissible functions. Another interesting
class of admissible functions are those in which both v(r)
and ©(k) are nonnegative (i.e., purely repulsive) for their
entire domains. The famous Hertz potential, describing the
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FIG. 1 (color online). Left: The “localized”’ square-mound
potential [v(r) = € = 1 for 0 = r <1 and zero otherwise] and
overlap potential [v(r) =1—3r/2+ r3/2 for 0=r <1 and
zero otherwise] in R3. Right: The “delocalized’’ dual square-
mound potential #(k) = 7%/2J3,(k)/(2k)>/? multiplied by 73 /6
and dual overlap potential §(k) = 67%J5/,(k/2)/k>.

interactions between elastic bodies, is one example. The
overlap potential discussed above is another example. Here
we show that the dual #(k) = 4sin®(kD/2)/(kD)?* of the
overlap potential ford =1 [v(r) =1—r/Dfor0 =r =
D and zero otherwise] (see Fig. 2) exhibits rich behavior.
For any density p, it can be shown that the unique Bravais
(integer) lattice with spacing p~! is a ground-state struc-
ture [5,10]. Moreover, using Theorem 1, we can show that
for any p = m, where m is a positive integer, the integer
lattice at reciprocal density p = (277rm)~! is a ground-state
structure for the dual potential ©(k); however, at noninteger
density p, ground-state structures for (k) are generally
non-Bravais lattices, establishing the strict inequality of
duality relation (5) [5]. This latter result implies that for
¥(k), the system undergoes an infinite number of “phase
transitions” from Bravais to non-Bravais lattices over the
entire density range. This one-dimensional example is
interesting in its own right and further details about its
ground states will be given elsewhere [5].

Another interesting example of nonnegative admissible
functions is the Gaussian (core) potential v(r) =
eexp[—(r/o)*] [16], which has been used to model inter-
actions in polymers [6]. The dual potentials are self-similar
Gaussian functions for any d. The potential function pairs
for the case d =3 with e =1 and o0 =1 are v(r) =
exp(—r2) and ©(k) = 72 exp(—k%/4). Simulations [16]
indicate that at sufficiently low densities in R3, the fcc
lattices are the ground-state structures for v(r). For the
range 0 < p < 7 3/2, fcc is favored over bec [17]. If
equality in (5) is achieved for this density range,
Theorem 1 would imply that the bcc lattices in the range
(47r)73/2 = p < o0 are the ground states for the dual po-
tential. Previous work [16] has verified this conclusion,
except in a narrow density interval of fcc-bee coexistence
0.17941 < p = 0.17977 around p = 7 3/% = 0.17959. In
the coexistence interval, however, Theorem 2 states the
strict inequalities in (5) and (6) must apply. In R?, the
triangular lattices apparently are the ground states for the
Gaussian potential at all densities (but there is no proof)
and therefore would not exhibit a phase transition.
Proposition 9.6 of Ref. [18] enables us to conclude that
the integer lattices are the ground states of the Gaussian
potential for all densities in R.
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FIG. 2. Left: The “localized” overlap potential in R: v(r) =
1 — rfor 0 = r = 1 and zero otherwise. Right: The correspond-
ing “delocalized’’ dual potential: #(k) = 4sin®(k/2)/k>.
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Completely monotonic (CM) admissible functions. A
radial function f(r) is completely monotonic if it possesses
derivatives f"(r) for all n = 0 and if (—1)"f")(r) = 0.
Not all CM functions are admissible (e.g., the power-law
potential 1/r” in R? is inadmissible). Examples of admis-
sible ones in R include exp(—ar) for @ >0 and 1/(r +
a)f fora >0, B>d.

Remarkably, the ground states of the pure exponential
potential have not been studied. Here we apply the duality
relations to the real-space potential v(r) = exp(—r) in R?
and its dual §(k) = c(d)/(1 + k*)“*V/2 [where c(d) =
2477d=1/21((d + 1)/2)], which has a slow power-law de-
cay of 1/k4*! for large k. Note that #(k) is a CM admis-
sible function in k%, and both v(r) and #(k) are nonnegative
admissible functions. We have evaluated lattice sums for
the exponential potential for a variety of Bravais and
periodic structures in R? and R3. In R?, we found that
the triangular lattices are favored for all p (as in the
Gaussian case). If equality in (5) is achieved, the triangular
lattices are also the ground states for the slowly decaying
dual potential ©(k) = 27/(1 + k2)*/2 for all p. In R3, the
fcc lattices are favored at low densities (0 =p =
0.017470) and bcc lattices are favored at high densities
(0.017470 = p < 00). The Maxwell double-tangent con-
struction reveals that there is a very narrow density interval
0.017469 = p = 0.017471 of fcc-bece coexistence. The
exponential potential appears to behave qualitatively like
the Gaussian. If equality in (5) applies outside the coex-
istence interval, Theorem 1 would predict that the ground
states of the dual potential #(k) = 877/(1 + k*)? are the fcc
lattices for 0 = p = 0.230750 and the bcc lattice for
0.230777 = p < oo [19].

Conjecture. The Gaussian potential, exponential poten-
tial, the dual of the exponential potential, and any other
admissible potential function that is completely monotonic
in distance or squared distance share the same ground-state
structures in R? for 2 =< d < 8 and d = 24, albeit not at the
same densities. For any such potential function, the ground
states are the Bravais lattices corresponding to the densest
known sphere packings [20] for 0 = p = p; and the re-
ciprocal Bravais lattices for p, = p < oo, where p; and p,
are the density limits of phase coexistence of the low- and
high-density phases, respectively. Whenever the Bravais
and reciprocal lattices are self-dual (d = 2, 4, 8, and 24)
p1 = po;otherwise p, > p; (which occurs ford = 3, 5, 6,
and 7).

This conjecture is bolstered by the work of Cohn and
Kumar [18], who proved that certain configurations of
points interacting with CM potentials on the unit sphere
in arbitrary dimension were energy-minimizing [21].

Elsewhere, we will apply the duality relations to a
broader category of functions beyond the pure Gaussians
that are self-similar under Fourier transformation and will
show that our formalism can be extended to obtain corre-
sponding duality relations for potential functions that also
include three-body and higher-order interactions [5].
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