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We analyze the recurrence probability (Pólya number) for d-dimensional unbiased quantum walks. A
sufficient condition for a quantum walk to be recurrent is derived. As a by-product we find a simple
criterion for localization of quantum walks. In contrast with classical walks, where the Pólya number is
characteristic for the given dimension, the recurrence probability of a quantum walk depends in general on
the topology of the walk, choice of the coin and the initial state. This allows us to change the character of
the quantum walk from recurrent to transient by altering the initial state.
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Over the years random walks (RW) have proven to be a
useful tool in many areas in physics as well as in other
branches of science [1]. Quantum analogues of random
walks have been proposed by Aharonov [2]. The quantum
walk (QW) found a promising application in quantum
information for the construction of fast search algorithms
[3], which initiated considerable effort to understand all
aspects of QWs [4]. Recently, localization has been found
in 2D [5–7] and in 1D for a generalized QW [8].

Recurrence in the dynamics of physical systems is an
important phenomenon with many far reaching consequen-
ces [9]. In the strict sense it means the periodicity of the
system and in a broader sense it is the recurrence of some
particular property [10]. Recurrence phenomena have been
studied extensively for a variety of quantum systems [11].
In accordance with the terminology for the classical ran-
dom walks we will consider the recurrence probability that
the walker returns to the origin in QWs.

In this Letter we extend the concept of Pólya number
characterizing the recurrence of RW to the quantum do-
main. We point out the fundamental difference between the
recurrence behavior of classical and quantum random
walks. In particular, the recurrence of QWs is not solely
determined by the dimensionality of the walk, but may
depend on the topology of the walk, choice of the coin
governing the time evolution, and the initial coin state.
Moreover, due to the intimate connection between local-
ization and recurrence, we find a simple criterion for the
former in QWs.

Let us consider an unbiased random walk on an infinite
d-dimensional lattice starting localized at the origin 0. The
probability that the walker returns to the origin during the
time evolution is called the Pólya number of the walk. If
the Pólya number equals one, then the walk is called
recurrent, otherwise there is a nonzero probability that
the walker never returns to its starting point. Such walks
are transient. Pólya [12] proved that one- and two-
dimensional walks are recurrent, while for higher dimen-

sions the RWs are transient and a unique Pólya number is
associated with them in each dimension [13].

The Pólya number of a classical random walk can be
expressed with the probability p0�t� that the walker returns
to the origin in the tth step and its behavior depends solely
on the infinite sum

P
1
t�0 p0�t�. A simple criterion exists for

a RW to be transient: the series must converge, otherwise
the walk is recurrent [14]. The sequence p0�t� consists of
positive numbers; therefore its decay determines the con-
vergence of the series: if, e.g., it decays faster than t�1 it is
convergent.

The definition of the Pólya number can be consistently
extended for QWs by the expression

 P � 1�
Y�1
t�1

�1� p0�t�� (1)

for an ensemble of identically prepared systems, in the
following sense. Take a system and measure the position of
the walker after one time step at the origin, then discard the
system. Take a second, identically prepared system and let
it evolve for two time steps, measure at the origin, then
discard the system. Continue similarly for arbitrarily long
evolution time. The probability that the walker is found at
the origin in a single series of such measurement records is
the Pólya number (1). The above definition ensures that the
same criterion applies as in the classical case: if the seriesP
1
t�0 p0�t� is convergent, then the walk is transient, other-

wise it is recurrent [15]. Since any interaction with a
quantum system and especially a measurement unavoid-
ably disturbs it, it is important to fix how measurements are
performed on quantum systems when comparing to classi-
cal results (cf. definitions for hitting time in graph QWs
[16,17]). One can imagine various experimental situations
where quantum walks are observed during propagation.
The definition of recurrence should then be different to
reflect properly the physics behind.
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Let us briefly review unbiased QWs on Zd. The Hilbert
space of the QW is given by the tensor product H �
H P �H C of the position space H P � ‘2�Zd� with the
basis formed by the states jmi where m 2 Zd and of the
c-dimensional coin space H C. Here c is determined by the
topology of the walk, in particular, by the number of
neighbors to which the walker can jump in a single step.
For example, the walker can jump in positive or negative
direction in a single spatial dimension [4], which leads to
c � 2d. Alternatively, it can perform such jumps in all
spatial dimensions simultaneously [18], so the coin space
has the dimension c � 2d. We denote all displacements
possible in a single step of the walk by the set of shift
vectors feiji � 1; . . . ; cg and define the orthonormal basis
in H C formed by the states jeii. We consider unbiased
walks where the shift vectors are restricted by the conditionP

ei � 0. The time evolution operator that propagates a
QW by a single step reads

 U � S�IP � C�; (2)

where IP denotes the identity operator on the position
space H P, C is the coin flip operator acting on the coin
state, and the conditional step operator S is defined by

 S �
X
i

jm� eiihmj � jeiiheij: (3)

The state of the QW after t steps

 j �t�i 	
X
m;i

 i�m; t�jmi � jeii � Utj �0�i (4)

is given by successive application of the operator (2) on the
initial state j �0�i. For the above defined walk to be
unbiased the coin flip C must be a unitary operator acting
on H C with all matrix elements Cij 	 heijCjeji of the
same absolute value 1=

���
c
p

. Such matrices are related to the
Hadamard matrices [19].

Because of the translational invariance of the QWs in
consideration, the time evolution (4) is greatly simplified
with the help of the Fourier transformation

 

~ �k; t� 	
X
m
 �m; t�ei�m
k�: (5)

Here we have defined the c-component vectors

  �m; t� 	 � 1�m; t�;  2�m; t�; . . . ;  c�m; t��T: (6)

The Fourier transformation (5) defines an isometry be-
tween ‘2�Zd� and L2�Kd� where K � ���;�� can be
thought of as the phase of a unit circle in R2 and k 2
Kd. The time evolution in the Fourier picture simplifies
into

 

~ �k; t� � ~U�k� ~ �k; t� 1�; ~U�k� 	 D�k�C; (7)

where the time evolution operator in the Fourier picture
~U�k� is given by the coinC and the c-dimensional diagonal
matrix D�k� with jth diagonal element e�iej
k, determined

by the topology of the QW. The time evolution in the
Fourier picture (7) is solved by diagonalizing the matrix
~U�k�, which is possible because by construction this ma-
trix is unitary. Hence it has eigenvalues of the form
�j�k� � exp�i!j�k��. We denote the corresponding eigen-
vectors as vj�k� and the scalar product in the
c-dimensional space by �, �. With this notation we can
write the state of the walker in the Fourier picture at time
t in the form

 

~ �k; t� �
X
j

ei!j�k�t� ~ �k; 0�; vj�k��vj�k�: (8)

Performing the inverse Fourier transformation we can
obtain the probability amplitudes  �m; t�. As we are inter-
ested in the recurrence of the QWs we need the probability
that the walker returns to the origin at time t

 p0�t� 	 p�0; t� �k  �0; t� k2 : (9)

Moreover, in analogy with the classical problem, we con-
sider initial states that are localized at the origin, i.e.,
 �m; 0� � 0 for all m � 0. From the definition (5) follows
that under such restrictions the Fourier transformation of
the initial condition ~ �k; 0� entering (8) is constant and
equals  �0; 0�. Hence we find the exact expression for the
probability amplitude determining the recurrence behavior
of the QW
 

 �0; t� �
Xc
j�1

Ij�t�; Ij�t� �
Z
Kd

dk
�2��d

ei!j�k�tfj�k�;

fj�k� � � �0; 0�; vj�k��vj�k�: (10)

The recurrence behavior of a classical random walk is
uniquely determined by its dimensionality. In contrast, for
quantum walks, as seen from (10), one has more freedom:
both the initial state  �0; 0� and the coin, represented by the
phases !j�k� and the eigenvectors vj�k�, can be varied.
Moreover, both !j�k� and vj�k� are affected by the topol-
ogy of the QW through the matrix D�k�. In the following
we demonstrate that the recurrence of QWs can in fact be
altered by exploiting the additional freedom offered by
quantum mechanics.

The recurrence of the QW is determined by the asymp-
totics of (10) which can be calculated, e.g., by the method
of stationary phase [20]. Accordingly, the asymptotic be-
havior of Ij�t� is only affected by the points where all
derivatives of !j�k� vanish (saddle points). In particular,
it is determined by the degeneracy of the saddle points,
given by the rank of the Hessian matrix, and the cardinality
of the set of saddle points. The classical result [20] shows
that if the phase !j�k� has no saddle points then Ij�t�
decays exponentially. If !j�k� has finitely many saddle
points that are nondegenerate, i.e., that the second deriva-
tive of !j�k� is nonvanishing, then asymptotically Ij�t� is
given by Ij�t� � t�d=2. Here we assume that fj�k� is
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smooth and nonvanishing at the saddle points. However, if
the initial state  �0; 0� is orthogonal to some eigenvector
vj�k� then fj�k� � 0 and the corresponding integral is
zero. If this is true only for k corresponding to one of the
saddle points then this particular saddle point will not
contribute to the integral Ij�t�. Hence the choice of the
initial state might change the behavior of the QW from
recurrent to transient. Moreover, we can encounter situ-
ations where the phase!j�k� does not depend explicitly on
some of the variables ki or has a continuum of saddle
points. In such a case we can expect a slowdown of the
decay of Ij�t�.

Let us illustrate these features on several examples. We
consider QWs for which the shift vectors ei have all entries
equal to�1: i.e., the coin space has the dimension c � 2d.
For this particular type of QWs we find that the diagonal
matrix D�k� can be written as a tensor product

 D�k� � D�k1� � . . . �D�kd� (11)

of 2
 2 diagonal matrices D�kj� � diag�e�ikj ; eikj�.
First, we present examples where the phases !j�k� have

finitely many nondegenerate saddle points. As follows
from the above discussion the probability p0�t� behaves
asymptotically like t�d where d is the dimension of the
walk. We start with general unbiased 1D QW

 C��;�� �
1���
2
p

ei� e�i�

ei� �e�i�

� �
: (12)

Here the matrix ~U��;�; k� 	 D�k�C��;�� has eigenvalues
�j��; k� � �e

�i!��;k� with the phase

 sin!��; k� � �
sin�k� �����

2
p : (13)

We find that the phase !��; k� has saddle points k0 � ��
�=2 and hence p0�t� behaves asymptotically like t�1.
Moreover, the asymptotic behavior is independent of the
initial state. Indeed, no nonzero initial state  �0; 0� exists
that is orthogonal to both eigenvectors for k0 � �� �=2.
Comparing the decay p0�t� � t�1 with the recurrence cri-
terion [14] we find that all unbiased 1D QWs are recurrent
for all initial states in concord with the classical result.
However, none of the QWs from the class (12) exhibits
localization, since for all of them the probability p0�t�
converges to zero. One can achieve localization in 1D by
considering generalized QWs for which the coin has more
degrees of freedom [8,21].

Let us now turn to 2D QWs for which the coin factorizes
into a tensor product

 C��;�� 	 C��1; �1� � C��2; �2�; (14)

i.e., we have an independent coin for each spatial dimen-
sion. From the relation (11) we find that the matrix
~U�k1; k2� also has the form of a tensor product

 

~U�k1; k2� � ~U1�k1� � ~U2�k2�: (15)

Therefore the eigenvalues �j�k� of (15) factorize into the
eigenvalues of ~U1 and ~U2. Hence their phases !j�k� have
nondegenerate saddle points and we find that p0�t� behaves
asymptotically like t�2. Similarly to the 1D case this scal-
ing is identical for all initial coin states. Hence we find that
all unbiased 2D QWs driven by independent coins for each
spatial dimension (14) are transient for all initial states.
The Pólya number of this class of QWs is approximately
0.29143. We note that the concept of QWs with indepen-
dent coins can be extended to arbitrary dimension d and
their Pólya numbers are uniquely determined by d [21]. In
contrast with the classical RWs they are recurrent only for
d � 1.

Let us now analyze the emergence of localization, or
more generally the slowdown of the decay of Ij�t�.
Consider the situation where !j�k� does not depend on
some of the variables ki, say n of them. This opens up the
possibility that Ij�t� in (10) factorizes into the product of
time-independent and time-dependent integrals over n and
d� n variables. If in the reduced space of d� n dimen-
sions a finite number of nondegenerate saddle points are
found, then one can proceed similarly to the previous case
and find the asymptotic behavior

 p0�t� � t��d�n�: (16)

Comparing this expression with the recurrence condition
[14] of random walks we find a sufficient condition for the
recurrence of QWs: at least one eigenvalue of the matrix
C�k� should be such that its phase !j�k� depends explic-
itly at most on a single variable and has a finite number of
saddle points in the reduced space. Moreover, if !j�k� is
independent of k the leading order term of the probability
p0�t� is a constant. In the latter case p0�t� has a nonvanish-
ing limit value and therefore the QW exhibits localization
for initial states being nonorthogonal to the corresponding
eigenvector. However, as we have already pointed out, a
given initial state  �0; 0� might lead to a faster decay than
(16) if it is orthogonal to all eigenvectors corresponding to
such eigenvalues. Orthogonality must hold at least at all the
related saddle points.

The above discussed situation is nicely illustrated on the
example of the 2D Grover walk driven by the coin G with
the matrix elementsGm;n � 1=2� �mn. This QW has been
extensively studied [6,7,18]. It was first identified numeri-
cally [6] and later proven analytically [7] by considering
the degeneracy of the eigenvalues of the transfer matrix
that the Grover walk exhibits localization except for a
particular initial state

  �0; 0� �  G 	
1
2�1;�1;�1; 1�T: (17)

For the 2D Grover walk the matrix ~U�k� has two constant
eigenvalues �1;2 � �1 and two of the form

 �3;4�k� � e�i!�k�; cos�!�k�� ��cosk1 cosk2: (18)
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Hence the 2D Grover walk exhibits localization unless the
initial state is orthogonal to the eigenvectors corresponding
to �1;2 at every point k � �k1; k2�. The analysis of the
eigenvectors of the matrix ~U�k� reveals that such a vector
is unique and equals (17). Moreover, for the particular
initial state (17) the probability p0�t� decays like t�2, since
the asymptotic behavior is determined by the remaining
eigenvalues �3;4�k� for which the phase !�k� has only
nondegenerate saddle points. Therefore the 2D Grover
walk is recurrent for all initial states except the one given
in (17). The numerical value of Pólya number for the
particular initial state (17) equals that of the 2D QWs
with independent coins [21]. As a generalization of the
Grover walk, one can construct for arbitrary dimensions a
QW that is recurrent [21], except for a subspace of initial
coin states. Moreover, this QW exhibits localization in
even dimensions.

Finally, we consider the situation where the phase!j�k�
has a continuum of saddle points; e.g., they align on some
curve �. The previously discussed case of !j�k�, which
does not depend on n variables, can be considered as a
particular example of this more general situation, since
such !j�k� obviously has a zero derivative with respect
to those n variables. The case of 2D integrals with curves of
stationary points are treated in Ref. [20] where it is shown
that the continuum of stationary points slows down the
decay of such integrals to t�1=2. Similar results can be
expected for higher dimensional saddle domains; however,
much less is known about the stationary phase method for
that case.

The recurrence of the 2D Fourier walk can be analyzed
along these lines. It is driven by the coin F with the matrix
elements

 Fm;n �
1
2 exp�i��m� 1��n� 1�=2�: (19)

Here we find that all four phases !j�k� of the time evolu-
tion operator in the Fourier picture ~U�k� have saddle points
at k0

1 � �=4 and �3�=4, and k0
2 � ��=2 and !1;2�k�

have two saddle lines �1 � �k1; 0� and �2 � �k1; �� [21].
Hence p0�t� behaves asymptotically like t�1 and the 2D
Fourier walk is recurrent, except for the subspace

  F�a; b� � �a; b; a;�b�T; 2jaj2 � 2jbj2 � 1; (20)

of the initial states, which are orthogonal to the eigenvec-
tors v1;2�k� for k 2 �1;2. For the initial states of the family
(20) we find the asymptotic behavior p0�t� � t

�2 implying
that the walk is transient. This corresponds to the absence
of the central spikes in the spatial distribution, as it was
found numerically for a special case in Ref. [6]. The value
of the Pólya number for the family (20) can be varied by
the complex parameters a and b of the initial state [21].

To conclude, we have extended the concept of Pólya
number to QWs in order to characterize their recurrence
properties. Our main result is that, unlike in the classical
case, recurrence for QWs can depend not only on the
dimensionality of the lattice but also on the topology of
the walk, the choice of the coin operator, and the initial
state. We have formulated sufficient conditions for the
recurrence and localization of QWs. The present study of
the recurrence and Pólya number based on the properties of
the matrix ~U�k� can be extended to higher dimensional
QWs where additional interesting effects can be expected
[21]. The explicit dependence of the QW on the coin and
the initial coin state opens up the possibility to design the
value of the Pólya number.
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