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We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits shear
thickening. From magnetic resonance imaging velocimetry and classical rheology it follows that as a
function of the applied stress the suspension is first solid (yield stress), then liquid, and then solid again
when it shear thickens. For the onset of thickening we find that the smaller the gap of the shear cell, the
lower the shear rate at which thickening occurs. Shear thickening can then be interpreted as the
consequence of dilatancy: the system under flow wants to dilate but instead undergoes a jamming
transition because it is confined, as confirmed by measurement of the dilation of the suspension as a
function of the shear rate.
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Complex fluids are immensely important in our every-
day life (e.g., foodstuffs, cosmetics), for industry (concrete,
crude oil), for understanding certain biological processes
(blood flow), and so on. Such complex fluids are mostly
suspensions of particles such as colloids, polymers, or
proteins in a solvent. The majority of these suspensions
exhibit shear thinning: the faster the material flows, the
smaller its resistance to flow, or apparent viscosity [1]. For
soft glassy materials, this is usually interpreted in terms of
the free energy landscape of the system. If the system is
sheared, the shear pulls the system over certain energy
barriers that the system would not be able to cross without
the applied shear; the viscosity consequently becomes
small.

Because of the generality of the shear-thinning phe-
nomenon, it is interesting to note that exceptions to the
rule exist. Typically for certain concentrated suspensions
of particles, shear thickening may be observed as an abrupt
increase in the viscosity of the suspension at a certain shear
rate [2]. The detailed mechanism of this shear-thickening
phenomenon is still under debate [1–10]. For colloidal
suspensions, the phenomenon is often attributed to the
shear-induced formation of hydrodynamic clusters [3]: in
this case, the viscosity increases continuously as a conse-
quence of its dependence on particle configuration [4]; this
may be but is not necessarily accompanied by an order-
disorder transition in the particle configuration [5]. The
viscosity rise can also be discontinuous at high volume
fractions [5,6], probably because of aggregation of clusters
creating a jammed network [7,8]. In the latter case, the
clustered shear thickened state may be metastable [6,9].

In terms of the free energy landscape, this poses a
challenging problem: why would some systems choose
easy paths (shear thinning) while others opt for difficult
ones (shear thickening)? One possible solution to this
problem proposed recently [11] is that shear thickening is
due to a reentrant jamming transition. It has been suggested
for glassy systems that applying a shear is equivalent to

increasing the effective temperature with which the system
attempts to overcome energy barriers [12]. If now a system
has a reentrant ‘‘solid’’ transition as a function of tempera-
ture, the ‘‘solid’’ phase may also be induced by the shear,
leading to shear thickening [11].

In this Letter we study a well-known example of a shear-
thickening suspension: cornstarch particles suspended in
water [13]. We show that the shear thickening can in fact be
viewed as a reentrant solid transition. The new findings are
that (i) at rest the material is solid because it has a (small)
yield stress; (ii) for low shear rate, shear banding (local-
ization) occurs, and the flowing shear band grows with
increasing shear rate, the shear thus liquefies the material;
(iii) shear thickening happens at the end of the localization
regime, where all of the material flows, subsequently it
suddenly becomes ‘‘solid’’ again. In addition, (iv) we find a
pronounced dependence of the critical shear rate for the
onset of shear thickening on the gap of the measurement
geometry, which can be explained by the tendency of the
sheared system to dilate.

The cornstarch particles (Sigma) are relatively mono-
disperse particles with, however, irregular shapes
[Fig. 4(b), inset]. Suspensions are prepared by mixing the
cornstarch with a 55 wt % solution of CsCl in demineral-
ized water. The CsCl allows one to perfectly match the
solvent and particle densities [13]. We focus here on the
behavior of a 41 wt % cornstarch suspension; all concen-
trated samples (between 30% and 45%) that we investi-
gated showed a very similar behavior. Experiments are
carried out with a vane-in-cup or plate-plate geometry on
a commercial stress-controlled rheometer. The vane ge-
ometry is equivalent to a cylinder with a rough lateral
surface which reduces wall slip [2]. The inside of the cup
is also covered with the granular particles using double-
sided adhesive tape. For the plate-plate geometry, the upper
plate is of 40 mm diameter; both plates are roughened.

Velocity profiles in the flowing sample were obtained
with a velocity controlled magnetic resonance imaging
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(MRI) rheometer from which we directly get the local
velocity distribution in a Couette geometry with a gap of
1.85 cm [14]. We investigated the stationary flows for inner
cylinder rotational velocity � ranging between 0.2 and
10 rpm, corresponding to overall shear rates between
0.04 and 2:35 s�1. The velocity profiles show that for
low rotation rates of the inner cylinder, there is shear
localization (Fig. 1): the velocity profile is composed of
two regions: the part close to the inner cylinder is moving,
and the rest is not. The MRI also allows us to measure the
particle concentration; to within the experimental uncer-
tainty of �0:2% in volume fraction the particle concentra-
tion is homogeneous throughout the gap. This however
does not completely rule out particle migration; we will
estimate possible maximum migration below at around
0.1%. Thus, it is possible that the particle concentration
in the flowing part of the material is slightly lower than that
in the ‘‘solid’’ part.

Upon increasing the rotation rate, a larger part of the
fluid is sheared, and for the highest rotation speeds the
sheared region occupies the whole gap. We are unable to go
to higher rotation rates since the shear thickening sets in
when shear band occupies the whole gap of the Couette
cell, and when it does the motor of the rheometer is no
longer sufficiently strong to rotate the inner cylinder: shear
thickening is observed as an abrupt increase of the mea-
sured torque on the rotation axis.

For the lower rotation speeds, since the part of the
material that does not move is subjected to a stress, this
means that the suspension has a yield stress. The yield
stress can be determined from the critical radius rc at
which the flow stops: the shear stress at a given radius r
as a function of the applied torque C and the fluid height H
follows from momentum balance, and thus the yield stress
at rc follows immediately as �c � C=2�Hr2

c. The yield
stress turns out to be on the order of 0.3 Pa. Although it
appears obvious that concentrated suspensions that show
shear thickening also have a yield stress, we have not found

literature comparing the prethickening flow behavior to a
Herschel-Bulkley model as we do here. This is probably
due to the fact that the yield stress is low: it is too small to
be detected from a simple experiment such as an inclined
plane test [15]. We can detect it relatively easily here
because we use the MRI data. The stress for the MRI setup
is measured on a rheometer with exactly the same mea-
surement geometry as used in the MRI. In the flowing part,
the shear rate can be deduced from the velocity profile v�r�
as _� � @v

@r �
v
r , where the second term on the right-hand

side is due to the fact that in a Couette geometry the stress
is not constant. Then, r can be eliminated from this equa-
tion when combined with the equation for the stress to
deduce the constitutive equation of the fluid. This is shown
in Fig. 1, and also shows that the suspension has a yield
stress �c � 0:3 Pa.

In the standard rheology experiments depicted in Fig. 2,
the first important observation is that the critical stress for
the onset of shear thickening is roughly constant at
� 20 Pa. This implies that there are two critical stresses
for which the viscosity becomes infinite: First, upon ap-
proaching the yield stress from above, the viscosity di-
verges in a continuous fashion, in agreement with the MRI
observations that the flow behavior is close to that of a
Herschel-Bulkley fluid. Second, at the critical stress for
thickening, a discontinuous jump of the viscosity is ob-
served. When taken together, these results strongly re-
semble the theoretical proposition [11] that shear
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FIG. 1. Dimensionless velocity profile in the gap obtained by
MRI measurements. Inset: Local shear stress as a function the
local shear rate. The line is a fit to the Herschel-Bulkley model:
� � �c � k _�n with �c � 0:3 Pa, k � 0:33 Pa � s, and n � 0:88.
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FIG. 2. (a) Apparent viscosity and normal stress as a function
of shear rate for different gaps. Measurements were made with a
plate-plate rheometer (Bohlin C-VOR 200) with radius R �
20 mm. (b) Viscosity as a function of applied stress, showing
the reentrant jamming transition.

PRL 100, 018301 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
11 JANUARY 2008

018301-2



thickening is due to a reentrant jamming transition
[Fig. 2(b)].

To pinpoint the mechanism of the thickening, a second
important observation is that a significant difference in
shear rate for the onset of shear thickening was observed
between Couette cells with different gaps: 0.25, 1, and
3 mm gaps gave onset shear rates for shear thickening
that systematically increased with increasing gap size,
showing a linear increase of the critical shear rate on the
gap. In order to investigate this in detail, we use a plate-
plate cell so that we can vary the gap in a continuous
fashion. This geometry has the additional advantage that
there is no reservoir of particles present, as is the case at the
bottom of the Couette cell, and in addition we can measure
the normal stresses. The rheometer measures a torque C
and a rotation rate !, which are related to the stress and
shear rate at the edge of the sample by � � 3C=2�R3 and
_� � 2�R!=b, with R the plate radius and b the spacing.

Figure 2 shows the measured apparent viscosity as a func-
tion of shear rate for different gaps. At a certain shear rate,
a very abrupt increase in viscosity is observed; this critical
shear rate increases with increasing gap. Comparison be-
tween plate-plate, cone-plate, and Couette cells showed
identical critical shear rates to within the experimental
uncertainty [16] showing that the shear rate gradient
present in our plate-plate geometry does not strongly affect
our results. We thus use the plate-plate cell only for the
critical shear rate, which is well defined. For the quantita-
tive determination of the constitutive law, on the other
hand, we use the MRI data. No time dependence was
observed, at least as long as the system had not thickened.
Notably, we looked for time dependence in the viscoelastic
properties, and the viscosity at a given imposed shear rate
as a function of time for periods extending to days: no time
evolution was observed.

Figure 2 also shows the normal stresses as a function of
the shear rate. Again, an abrupt increase is observed at a
shear rate that is very comparable to the shear rate found in
the viscometry measurements. Defining the critical shear
rate as the first shear rate for which the apparent viscosity
goes up, or the lowest shear rate for which a measurable
normal stress is observed, both are similar, and increase
linearly with the gap between the plates.

A puzzling observation is that the results shown in Fig. 2
only hold when the surplus of paste around the plates is
carefully removed. If a few milliliters of suspension is left
on the bottom plate in contact with the paste between the
two plates, the critical shear rate strongly increases and
becomes independent of the gap size (Fig. 3).

The critical shear rate with a surplus is, in addition, the
same as that found in the large-gap Couette cell, in which
there is also a reservoir of particles present at the bottom of
the inner cylinder. The flow curve of Fig. 1 shows that also
in the MRI experiments exists a critical shear rate of about
4 s�1; as soon as this shear rate is exceeded, the system
shear thickens. We therefore conclude that in the classical
rheology experiments the critical shear rate for thickening

obeys _�cM � _�cI � �h for h < hc and constant above;
here h is the gap, _�cI � 5:5 s�1 is the critical shear rate
that is intrinsic to the system _�cM , and � � 0:22�
0:04 s�1 mm�1.

The principal information obtained from the normal
stress measurement is their on-off behavior, which is quan-
titatively linked with the onset shear rate. The normal
stresses are reminiscent of the Reynolds dilatancy of dry
granular matter: when sheared, it will dilate in the normal
direction of the velocity gradient. Dilatancy is a direct
consequence of collisions between the grains: to accom-
modate the flow, the grains have to roll over each other in
the gradient direction, and hence the material will tend to
dilate in this direction. However, in our system, the grains
are confined, both between the plates and in the solvent.
The latter provides a confining pressure that is mainly due
to the surface tension of the solvent, making it impossible
to remove grains from the suspension. As suggested by
Cates et al. [17], the confinement pressure associated with
this should be on the order of the surface tension over the
grain size, Pc � �=R � 7000 Pa, of the same order of
magnitude as the typical normal stresses measured in the
experiments near the onset of shear thickening. In addition,
this gives a maximal dilation that is on the order of 1
particle diameter ( � 20 �m); compared to the radius of
the plate-plate cell this gives a maximum dilation of about
0.1%, too small to be detected by our MRI density
measurements.

It is tempting to see whether the shear-thickening phe-
nomenon itself can be due to the confinement: if the
cornstarch is confined in such a way that the grains cannot
roll over each other, this could in principle lead to an abrupt
jamming of the system. In our rheometer, instead of setting
the gap size for a given experiment, we can impose the
normal stress and make the gap size vary in order to reach
the desired value of the normal stress. If this is done for
different shear rates, and the target value for the normal
stress is taken to be zero, we can obtain the dependence of
the gap variation on shear rate d�h=d _�. A typical mea-
surement is shown in Fig. 4(a), where we impose a constant
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FIG. 3 (color online). Evolution of the critical shear rate a
function of the gap.
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shear rate and measure the gap and viscosity as a function
of time. This shear rate and initial gap combination are
beyond the shear-thickening transition in shear rate, and
thus the viscosity starts to strongly increase, as do the
normal stresses. The latter leads to an increase in the
gap, allowing the system to dilate, until the shear thicken-
ing disappears altogether: the viscosity is back to low
values. This unambiguously demonstrates that the shear
thickening is a dilation effect, and that taking away a
confining factor makes the thickening disappear altogether.
Measurements comparing plate-plate and cone-plate show
very similar behavior; this suggests that by far the domi-
nant contribution to the normal stress difference in the
plate-plate cell comes from N1. Dilation measurements
with and without a surplus of paste show very similar
behavior (although of course at slightly different shear
rates). This shows that it is indeed the normal stress dif-
ferences rather than the normal stresses that are important.

More quantitatively, repeating this experiment for differ-
ent shear rates [Fig. 4(b)], one can obtain the gap change as
a function of the shear rate that allows the suspension to
flow freely, i.e., without developing normal stresses due to
particle collisions. The linear evolution of �h with the
shear rate �h � ��1 _�c with � � 0:27� 0:03 s�1 mm�1

is completely consistent with the � value of Fig. 3, provid-
ing a quantitative check that indeed the dilatancy is re-
sponsible for the shear thickening. It also explains why
leaving paste around the measurement geometry increases
the critical shear rate: the extra suspension acts as a reser-
voir, in which the sheared suspension can dilate.

In conclusion, the effect of shearing is to first unjam a
jammed (yield stress) system, and for higher stresses jam
the unjammed system because of the confinement. This
leads to a solid-liquid-solid transition as a function of the
applied stress. In terms of the free energy landscape picture
of sheared glassy systems, our results show that it is not
sufficient to consider just the shear stresses in determining
how an imposed flow affects the relaxation time or viscos-
ity of the system: the normal stress differences that arise
from the flow itself have to be considered also. Thus, the
exception to the rule that all complex fluids are shear
thinning is likely to be due to other components of the
stress tensor, which have not been considered in the expla-

nation of shear thinning in terms of the free energy land-
scape [12].
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FIG. 4 (color online). (a) Time evolution of the torque and the normal stress for _� � 1:6 s�1. Inset: Evolution of the normal stress
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