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We propose a mechanism to explain the nature of the damping of Rabi oscillations with an increasing
driving-pulse area in localized semiconductor systems and have suggested a general approach which
describes a coherently driven two-level system interacting with a dephasing reservoir. Present calculations
show that the non-Markovian character of the reservoir leads to the dependence of the dephasing rate on
the driving-field intensity, as observed experimentally. Moreover, we have shown that the damping of Rabi
oscillations might occur as a result of different dephasing mechanisms for both stationary and nonsta-
tionary effects due to coupling to the environment. Present calculated results are found in quite good
agreement with available experimental measurements.
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Localized semiconductor systems exhibiting few dis-
crete energy levels (‘‘artificial atoms’’), such as specially
selected donor impurities and quantum dots (QDs), are
prospective candidates to play the role of basic building
blocks for quantum information processing. In particular, a
two-level semiconductor system may exhibit Rabi oscilla-
tions (ROs) of its population when coupled to a driving
field, so that it may be coherently controlled [1–5]. There
are a number of dephasing mechanisms for localized semi-
conductor systems, some of which are essentially non-
Markovian so that one needs to take into account memory
effects as well as the back action of a dissipative reservoir
on the radiating system. For example, a dephasing caused
by spin-spin coupling between neighboring QDs or carriers
captured in traps in the vicinity of a QD was shown to lead
to non-Markovian dynamics [6,7]. Such reservoirs have
correlation times comparable with the typical decoherence
time of the dephasing system. Also, the dephasing due to
coupling with phonons was shown to lead to non-
Markovian features in the dynamics of a two-level systems
(TLS) [8]. Carriers and excitons in localized semiconduc-
tor systems may be coupled not only to localized neighbor-
ing states, but also to delocalized ones [9]. This diversity of
dissipation channels has led to a number of novel features
in such systems’ dynamics. In the present work we focus
our attention on one peculiar phenomenon which has
caused and is still causing much controversy, namely, the
damping of ROs due to the increase of the driving-pulse
area which is an observed feature of coherently excited
localized semiconductor systems [1–5]. A number of mu-
tually contradicting explanations was suggested for it. One
of these is that such a dephasing is due to the system’s
interaction with a non-Markovian reservoir of phonons [8].
However, the dephasing process takes place even when
the coupling with phonons is negligible [3]. Driving-

dependent damping of ROs was proposed to occur as a
consequence of excitations of biexcitons in the QD [10],
although damped ROs are also observed when there is no
possibility for the biexciton excitation [3]. Recently, it
was demonstrated that the experimentally observed [2]
intensity-dependent damping of ROs can be reproduced
by introducing into the standard Bloch equations a dephas-
ing rate dependent on the driving-field intensity [11]. On
the other hand, although there is an experimental confir-
mation of a driving dependence of the dephasing rate [3],
an intensity-independent dephasing rate has also been
measured [4].

Based on this controverted scenario, in the present work
we propose to shed some light on this matter by studying a
simple TLS excited by a classical coherent field and
coupled to a general dephasing reservoir. Within a quite
general and straightforward approach, we demonstrate that
a driving-field dependent damping of ROs stems from
various relaxation mechanisms entering into play in differ-
ent experimental situations. Furthermore, we show that
driving-dependent damping may occur whether the reser-
voir is influenced or not by the driving field. To keep it
simple, and to focus only on features which give rise to the
phenomenon in question, we assume no population damp-
ing of the TLS. This also corresponds to the real experi-
mental situation with driving by short laser pulses, so that
the population damping is negligibly slow on the time scale
of the system’s dynamics [2]. In the frame rotating with the
driving-field frequency !L working within the interaction
picture with respect to the reservoir variables and using the
rotating-wave approximation, we describe our problem
with the following standard effective Hamiltonian,

 Htot�t� � H0�t� � @����R�t�; (1)

where the undamped system’s Hamiltonian is given by
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 H0�t� � @����� � @���t��� ����t����: (2)

Here �	 � j	ih
j are the system’s raising and lowering
operators, the kets j	i correspond to the excited and
ground states of the TLS, respectively, � � !0 �!L is
the detuning of the driving-laser frequency !L from the
resonance frequency !0 of the TLS transition, with the
possible addition of a frequency-shift term due to the
interaction with the dephasing reservoir. The reservoir is
described by the operator R�t�, which might also depend
on classical stochastic variables (describing, for example,
different realizations of the reservoir in each run of an
experiment [6]), whereas ��t� describes the shape of the
driving pulse.

Let us now assume that the reservoir correlation function
hR�t�R���i satisfies the following general requirements:
hR�t�R���i ! 0, when t, �! 1, and jt� �j ! 1. If the
coupling of the reservoir to the TLS is weak, and the
reservoir correlation function decays with t; �! 1, and
also with jt� �j ! 1 much faster than the typical time
scale of the system’s evolution, it is possible to obtain a
time-local master equation [6,12] for the problem de-
scribed by the Hamiltonian (1) and (2). Following the
approach developed in Ref. [6], we introduce dressed
operators describing the interaction with a classical field,
i.e., S	�t� � Uy�t��	U�t�, where the unitary ‘‘dressing’’

transformation [13] is given by U�t� � T
 

expf� i
@
�R

t
t0
H0���d�g, and T

 

denotes the time-ordering operator.
One may use the time-convolutionless projection operator
technique or cumulant’s expansion and the Born approxi-
mation for the ‘‘dressed’’ density-matrix master equation,
and then going back to the ‘‘bare’’ basis, one obtains the
following set of Bloch equations with time-dependent co-
efficients [6,12]:

 

d���
dt

� i���t���� ����t�����; (3)

 

d���
dt

�fi���hR�t�i����t�g���� i ����t��1�2����;

(4)

where ��� � h�j�j�i, �	
 � h	j�j
i, � is the density
matrix of the TLS in the bare basis, and the time-dependent
dephasing rate ��t� and the generalized Rabi frequency
���t� are defined as

 ��t� �
Z t

t0
d�hR���R�t�iD����� t�; (5)

 

���t� � ��t� �
Z t

t0
d�hR���R�t�iD����� t�; (6)

where D���t� and D���t� are dressing functions [13]. In
the case of a rectangular pulse [��t� � �=2 for the pulse
duration, which we will use in further discussions here],

one obtains

 D���t� �
1� c2 � s2 cos��Rt�

2
; (7)

 D���t� �
i�
�R
fc�1� cos��Rt�� � i sin��Rt�g; (8)

where c � �=�R, s � �=�R, and �R �
�������������������
�2 ��2
p

is
the effective Rabi frequency.

Let us now consider the simplest situation in which the
driving field interacts only with the localized system. In the
Markovian limit one has hR���R�t�i  ���� t� and, there-
fore, as follows from Eqs. (5) and (6), one recovers the
standard system of Bloch equations for a driven TLS in the
presence of dephasing effects. In this case, the dephasing
rate, ��t� � �, is constant and independent of the driving-
field intensity. Then, as expected, ROs persist for all values
of the field’s intensity [cf. dotted curve in Fig. 1(a)].

For a general non-Markovian reservoir one may write
the reservoir’s correlation function as a sum of a stationary
contribution K��� t� and a nonstationary one P��; t�
which tends to zero for t � � as t; �! 1, i.e.,
hR���R�t�i � K��� t� � P��; t�, where P��; t� is respon-
sible for non-Markovian effects at the initial stage of the
system’s dynamics. For the moment, let us ignore effects of
P��; t�, and consider the Fourier-transform K�w� of
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FIG. 1 (color online). (a) Rabi oscillations of the photocurrent,
at resonance, as a function of the excitation amplitude. The
dotted line is the solution given by the Markovian Bloch equa-
tions with the dephasing rate independent of the driving field,
whereas the solid line corresponds to the solution of the Bloch
equations with the driving-dependent dephasing rate and gener-
alized Rabi frequency given by Eqs. (10) and (11). Solid squares
represent experimental data from Zrenner et al. [2], for a pulse
width of about 1 ps. Here, a � pulse corresponds to the unit of
the excitation amplitude. (b) ROs in the photoluminescence (PL)
intensity, at resonance, with full theoretical curves corresponding
in descending order to pulse widths of 9.3, 7.0, and 5.4 ps,
respectively. Calculations are performed with the driving-
dependent dephasing rate and generalized Rabi frequency as
in (a). Solid symbols are the corresponding experimental data
from Wang et al. [3].
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K�t� �
R
dwK�w�e�i�w�!L�t. From Eq. (5), one obtains

 ��t� �
Z t

t0
d�

Z
dwK�w�e�i�w�!L����t�D����� t� (9)

for the dephasing rate. Notice that the Markovian approxi-
mation holds whenever K�!� is smooth in the vicinity of
both the frequency !L and TLS transition frequency.
Moreover, Eq. (9) indicates that a sufficient intense
driving-field probes K�!� away from the !L frequency.
The K�!� spectrum may be smooth enough in the vicinity
of all components of the triplet !L;!L 	�R to justify a
Markovian approximation for each of them [6,14]. Taking
into consideration that K�!� has different values at these
frequencies, even a Markovian approximation for each
component of the triplet should yield to an intensity-
dependent dephasing rate. Therefore, by performing the
Markovian approximation for the different components
of the triplet in a standard way, for a rectangular driving
pulse, one finds from Eq. (9) the time-independent dephas-
ing rate [6]: � � �

2 �c
2 � 1�K�!L� �

�
4 s

2�K�!L ��R� �

K�!L ��R��. Moreover, when differences in values of
K�!� at frequencies !L;!L 	�R are much smaller than
the value ofK�!L�, one may expandK�!� in the vicinity of
!L and obtain

 � � �K�!L� �
��2

4

d2

d!2 K�!�
��������!�!L

(10)

as an intensity-dependent dephasing rate. Here we notice
that Brandi et al. [11] have used an intensity-dependent
recombination rate as in Eq. (10) to model experimental
measurements on ROs in a QD semiconductor TLS, and
found good agreement with the excitonic photocurrent data
as measured by Zrenner et al. [2]. Also, from Eq. (6), one
may use the same approximation as before in obtaining
Eq. (10), and find

 

�� �
1

2

�
�� i��

d
d!

K�!�
��������!L

�i
���

2

d2

d!2 K�!�
��������!L

�

(11)

for the generalized time-independent Rabi frequency.
Now we apply the developed approach in order to obtain

a quantitative understanding of the experimental measure-
ments by Zrenner et al. [2] and Wang et al. [3]. Figure 1
displays the present results corresponding to the solution of
the Bloch equations with the driving-dependent dephasing
rate and generalized Rabi frequency [see Eqs. (10) and
(11)] chosen in order to give the appropriate ROs as found
in the experimental measurements [2,3]. One clearly notes
the excellent agreement with the excitonic photocurrent
measurements of Zrenner et al. [2] [Fig. 1(a)] and photo-
luminescence measurements by Wang et al. [3] [Fig. 1(b)].
One needs to emphasize that, with respect to the effects
stemming from the stationary part of the reservoir’s corre-
lation function, the particular form of the K�!� function is

of no importance as long as it satisfies quite general
requirements as mentioned before. In the present calcula-
tion, we have assumed the shift in the Rabi frequency to be
small and, therefore, only the value of the K�!� function at
the point !L and two of its derivatives are of importance
[cf. Eqs. (10) and (11)]. These are the only ‘‘free’’ parame-
ters to match the experiment. Moreover, apart from the
value K�!L�, only the second derivative of K�!� at the
point!L plays a significant role, and we have actually used
essentially this parameter to match the experimental data.

We now consider that the coherent driving pulse applied
to the TLS may also influence its surroundings. If the
action of the driving field on the system surroundings is
weak, the K��� t� stationary contribution to the reservoir
will essentially have the same dependence on the driving-
field intensity as described above. We note that the driving-
pulse action on the reservoir may also give rise to non-
Markovian effects stemming from the P��; t� nonstationary
part of the reservoir’s correlation function, and that ob-
servable manifestations of these effects may be very simi-
lar to those described above. Let us illustrate it with a
simple model of a bosonic reservoir driven by the same
rectangular pulse that is applied on the TLS under inves-
tigation. Using the rotating-wave approximation, one may
describe the whole ‘‘TLS� reservoir’’ system with the
following Hamiltonian
 

H1�t��H0�t��Hres�t��@����
X
j

�gjb
�
j e

i!L�t�t0��H:c:�;

(12)

where Hres�t� is the reservoir Hamiltonian,

 Hres�t� � @
X
j

�jb
�
j bj � @

X
j

�j�t��b
�
j � bj�; (13)

and the gj are interaction constants, the �j are detunings of
the reservoir modes from the driving field, and the �j are
Rabi frequencies for every particular reservoir mode [we
assume them to be constant, �j�t� � �j, for the pulse
duration]. Using the interaction picture with respect to
Hres�t�, one recovers from Eq. (12) the Hamiltonian of
Eq. (1) with the following reservoir operator

 R �t� �
X
j

gj

�
bj �

�j

�j

�
ei��L��j��t0�t� � H:c:; (14)

and with the system’s detuning shifted due to the interac-
tion with the excited reservoir, i.e., �! ��
2
P
jgj�j=�j. For the reservoir initially at the vacuum

state, one obtains

 hR�t�i �
X
j

gj
�j

�j
ei��L��j��t0�t� � H:c:; (15)

and the reservoir correlation function hR���R�t�i as the
sum of a stationary part K��; t� �

P
jg

2
je
i��L��j��t��� with
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a nonstationary part P��; t� � hR���ihR�t�i. The stationary
part K�t� produces effects already described above, and
here we assume that K�w� is wide and smooth enough so
that the stationary dephasing rate �s is independent of the
intensity of the driving field. Then, from Eq. (5), one has

 ��t� � �s � hR�t�i
Z t

t0
d�hR���iD����� t�: (16)

Note that the nonstationary part of the dephasing rate ��t�
decays with time [see Fig. 2(a)], since hR�t�i ! 0 for t!
1, and that the function hR�t�i may decay slower than the
stationary part K�t� of the reservoir’s correlation function
as the driving field excites different modes of the reservoir
in a different way, and the spectral density of the reser-
voir’s excitation may therefore be much narrower than
K�w�. Moreover, in experiments on ROs in localized semi-
conductor systems one deals with short driving pulses, so
that the nonstationary part of the dephasing rate may play a
significant part in the system’s dynamics. Even if one
assumes D���t� � 1 for the time interval of interest, the
nonstationary part of the dephasing rate will be dependent
on the driving-field intensity. This is a purely non-
Markovian dynamical effect producing an intensity-
dependent damping of ROs [cf. Fig. 2(b)] quite similar to
those described before.

The decrease of the dephasing rate with time may be
responsible for the constant value of the dephasing rate as
measured after the application of the driving pulse in the
experimental measurements by Patton et al. [4] [this situ-
ation is illustrated in Fig. 2(a)]. Also, it may explain the
decreased dephasing rate after the application of the pulse
as in the experiment by Wang et al. [3]. To conclude, a
driving-dependent damping of ROs due to the nonstation-

ary contribution of the reservoir’s correlation function may
take place for quite general reservoirs. Indeed, the nature of
the reservoir influences only the particular form of P��; t�
and not its general properties, which determine the effect in
question.

In summary, we have demonstrated that the damping of
ROs with the driving-field intensity in localized semicon-
ductor systems (QDs, shallow donors, etc.) is an effect of a
very general nature, and a consequence of non-Markovian
effects due to the coupling of the system to a reservoir. The
exact nature of a reservoir (being an ensemble of phonons,
other localized systems, traps, free carriers in a wetting
layer, coupling to biexcitons or higher decaying levels,
etc., or a combination of mechanisms) is not of particular
importance for the manifestation of the effect. Similar
damping of ROs may occur as a consequence of different
physical mechanisms. The first one stems from stationary
properties of the reservoir whereas the second one is a
purely nonstationary effect occurring when the driving
field excites the reservoir with a decay time of the nonsta-
tionary part of the reservoir’s correlation function compa-
rable to the driving-field pulse length.
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FIG. 2. Examples of (a) dephasing rate ��t� [cf. Eq. (16)] and
(b) upper-state population dynamics, for the fixed time moment
corresponding to the end of the rectangular pulse, versus exci-
tation amplitude, for a model [6] hR�t�i  ��e���t�t0�, with
� � 2 ps�1. Dotted lines correspond to D����� t� � 1
whereas solid lines correspond to the D����� t� defined in
Eq. (7).
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