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We report the first investigation of the topology of spin-polarized charge density, specifically in bcc and
fcc iron. While the total spin-density is found to possess the topology of the non-magnetic prototypical
structures, the spin-polarized charge densities of bcc and high-spin fcc iron are atypical. In these cases, the
two spin densities are correlated: the spin-minority electrons have directional bond paths and deep
minima, while the spin-majority electrons fill these holes, reducing bond directionality. The presence of
distinct spin topologies allows us to show that the two phase changes seen in fcc iron (paramagnetic to
low-spin and low-spin to high-spin) are different. The former follows the Landau symmetry-breaking
paradigm and proceeds without a topological transformation, while the latter involves a topological
catastrophe.
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Bader’s topological theory of molecular structure,
Atoms in Molecules (AIM), has been successfully applied
to a variety of crystalline systems [1–9]. It has been
employed to investigate the nature of bonding in materials
ranging from high temperature alloys to biological sys-
tems. These have yielded surprising results, such as second
neighbor bond paths in B2 ionic crystals [3] and transition
metal aluminides [4], with the magnitude of the latter
correlating to failure properties [5]. Other studies have
used bond path properties to offer first principles explan-
ations of stress-induced failure in brittle and ductile alloys
[6], as well as shear elastic constants in a variety of pure
metals and alloys [7,8]. Building on these ideas and using
the rigorous definitions of bond paths afforded by the
theory, the anomalous behavior of iridium under shear
was also explained [9].

One of the attractive features of AIM is its reliance on
the charge density, a quantum mechanical observable, that
is most often calculated but can, in principle, be measured
via x-ray diffraction techniques [10]. In a similar fashion,
the spin-polarized charge density is an observable that can
be calculated or measured using spin-polarized neutron
diffraction. Despite the information and insights that
have come from topological investigations of the total
charge density, the same analysis has yet to be performed
on spin-polarized densities. Here, we report the results
from the first such studies, exploring the spin-minority
and spin-majority topologies of body-centered-cubic
(bcc) and face-centered-cubic (fcc) iron.

This first application of AIM to spin density sheds light
on the origins of the magnetic phase transitions of fcc iron.
It is argued that this system undergoes two distinct phase
transitions during volume expansion: a second-order phase
change, from a paramagnetic to a low-spin state, occurs at
smaller volumes. It is coincident with a change in the
charge density at the critical points without a topological
transformation. At larger volumes, the low-spin state
changes to high-spin through a discontinuity in the mo-

ment, where the topology also transforms. Thus, the latter
change is a topological phase transition.

The framework of AIM can be applied in the same
manner to both the total and spin-polarized densities. It is
known from the Hohenberg-Kohn theorem that all ground-
state molecular properties are a consequence of its charge
density ��~r� [11], a scalar field in three spatial dimensions.
Bader noted �� ~r� must also contain the essence of a mole-
cule’s structure, which can be described topologically.

The topology of a general scalar field can be character-
ized in terms of its critical points (CPs), the zeros of the
gradient of this field. There are four kinds of CP in a three-
dimensional space: a local minimum, a local maximum,
and two kinds of saddle points. These CPs are convention-
ally denoted by an index, which is the number of positive
curvatures minus the number of negative curvatures. For
example, a minimum CP has positive curvature in three
orthogonal directions; therefore, it is called a (3, 3) CP. The
first number is simply the number of dimensions of the
space, and the second number is the net number of positive
curvatures. A maximum is denoted by (3, �3), since all
three curvatures are negative. A saddle point with two of
the three curvatures negative is denoted (3, �1), while the
other saddle point is a (3, 1) CP.

Through extensive studies of molecules and crystals,
Bader [1] and Zou and Bader [2] showed that it was
possible to correlate topological properties of the charge
density with elements of molecular structure and bonding.
In particular, a bond path was shown to correlate with the
ridge of maximum charge density connecting two nuclei,
such that the density along this path is a maximum with
respect to any neighboring path. The existence of such a
ridge is guaranteed by the presence of a (3, �1) CP
between bound nuclei. As such, this CP is sometimes
referred to as a bond CP.

Other types of CPs have been correlated with other
features of molecular structure. A (3, 1) CP is topologically
required at the center of ring structures, e.g., benzene.
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Accordingly, it is designated a ring CP. Cage structures are
characterized by a single (3, 3) CP and again are given the
name cage CPs. The locations of the atomic nuclei always
coincide with a maximum, a (3, �3) CP. Hence, it is
conventionally called an atom CP.

In this study, iron’s spin-polarized charge densities were
calculated using the Vienna ab initio simulation package
(VASP) version 4.6 [12,13]. The Perdew-Wang (PW91)
generalized gradient corrections [14] and the Vosko-
Wilk-Nusair interpolation [15,16] of the correlation part
of the exchange-correlation functional were included.

Calculations performed on nonmagnetic, monotonic,
bcc transition metals show that the ground state total
charge densities share the same topology as the prototype
structure, W. Each atom has eight bonds to the nearest
neighbor atoms, with no known case of second neighbor
bond paths in elemental bcc materials. This also holds true
for the total charge density of ferromagnetic bcc (�) Fe;
however, it does not hold for the spin density topology.

Two phases of bcc Fe with lattice constants (moments)
of 2.87 Å (2:22�B) [17,18] and 2.83 Å (2:21�B), respec-
tively, were investigated, yielding identical topologies. The
total charge density topology is prototypical bcc, as can be
seen in Fig. 1(a), where a contour plot through second
neighbor atoms in a (100) plane is shown. A cage point,
circled in Fig. 1(a), is present. Similarly, the spin-minority
density reflects the topology of the total, Fig. 1(b). When
the spin-majority density is examined, however, a bond
point is found between second neighbor atoms, Fig. 1(c),
giving rise to 14 bond paths in the spin-majority topology.

Our results are consistent with the band theory of ferro-
magnetism, wherein the d-band splits into bonding, spin-
minority, and less bonding, spin-majority, bands. As bcc Fe
has Oh symmetry about the atoms, the d orbitals reduce as
T2g and Eg at the band �-point. The spin-minority elec-
trons predominately populate the triply degenerate state, to
produce 8�-bonds directed towards cube corners. The
electrons in the spin-majority band are more equitably
distributed between the T2g and Eg bands. The inclusion
of electrons of Eg symmetry increases the charge density at
the cube faces; e.g., second neighbor bond paths are
formed. These are, however, weakly directional.

Directionality has been quantified by two components,
using the quadratic surface constructed from the Hessian of
the charge density (or spin-polarized charge density) at the
bond CP [4,8,9]. An elliptic cone surrounding the bond
path is a quadratic surface consistent with the signs of the
principal curvatures at the bond CP. The extreme angles of
the cone with respect to the plane normal to its axis are
given by

 tan� �
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where �kk is the principal curvature parallel to the bond
path and �?? and �?0?0 are the two principal curvatures
perpendicular to the bond path, which are degenerate in the

bcc structure. This notation is employed to reflect the fact
that the terms are all second derivatives of ��~r� in the
direction indicated by the subscripts. The definition in
Eq. (1) is trivially generalized to directionality for the
spin-polarized charge density by affixing a spin index.

This definition was motivated by the desire to associate a
‘‘distance’’ to bond breaking, i.e., the vanishing of a bond
CP and the transformation of the elliptic cone to intersect-
ing planes. This will occur when one (or both) of the
principal curvatures perpendicular to the bond path van-
ishes. By definition, then, bonds with larger values of
directionality are further from a topological instability.
The degenerate components of the spin-minority bond
directionality are found to be 0.565, while those of the
spin-majority are 0.472 and 0.227 for the first and second
neighbor bond paths, respectively. In comparison, the bond
directionality is 0.597 in W and 0.502 in bcc Fe.

When nonmagnetic fcc metals were examined, only first
neighbor bonds were found in the total charge density,
Fig. 2. Each atom has a total of 12 bond paths, and both
the octahedral and tetrahedral holes contain a cage point.
However, as with magnetic bcc Fe, the spin densities give
rise to distinct topologies. In the case of fcc (�) Fe, three
magnetic phases are observed, high-spin, low-spin, and
paramagnetic (HS, LS, and PM, respectively) phases,
each characterized by a different range of lattice constants

a b

c

FIG. 1. Total (a), spin-minority (b), and spin-majority (c)
charge density contour plots in bcc Fe. The cut-plane passes
through second neighbor atoms. Darker regions correspond to
low charge density. Cage points, circled in white, are present in
the total and spin-minority charge densities. Second neighbor
bond points (one circled in white) replace these in the spin-
majority charge density.
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[19–24]. From the VASP calculations, we find the HS phase
corresponds to a � 3:564 �A, while the LS phase occurs for
a � 3:563 �A, with the PM phase equilibrating at a �
3:45 �A.

The LS-HS phase change proceeds through a magneto-
volume instability [21,22]. As the lattice parameter is
increased from its LS phase (a � 3:465 �A) value, the mo-
ment increases smoothly from 0:75 �B to 1:3 �B at a �
3:563 �A. Then, over a 0.001 Å increase in lattice constant,
a near doubling of the moment to 2:5 �B at a � 3:564 �A
results. Our results agree well with other computational
[23,24] and experimental studies [25,26]. Less clear is the
PM-LS phase change. The situation yields ambiguous
results if � is used as an order parameter, with the tran-
sition appearing as first [19,21] or second [23] order. Small
changes in total energy associated with this phase change,
0:001 eV=atom [23], make the correct assignment of mo-
ment problematic.

The topology of the PM phase is identical to the fcc
prototype, where � and � are not equivalent. In the fcc
structure, the directions of principal curvature perpendicu-
lar to the bond path at the bond CP point toward the
octahedral and tetrahedral holes are denoted as �oo and
�tt, respectively. Now, the components of directionality
become

 tan� �
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For Fe and Cu, respectively, the values of tan� �tan��
are found to be 0.562 (0.456) and 0.463 (0.396). This
increase is expected, as directionality decreases in the
late transition metals [7–10], which corresponds to the
filling of antibonding orbitals. Similarly, the topology of
the LS phase is identical to the prototype. While the

transition from PM to LS shows no topological change,
the charge density at the bond CPs changes rapidly. Both
the PM and LS phases of fcc Fe have bonds with direction-
ality greater than that of bcc Fe and prototypical fcc top-
ologies. After a transformation to the HS phase, a different
picture emerges.

The topology of the spin-majority and total charge den-
sity in the HS phase is identical to the PM and LS phases.
Bond directionality is, however, reduced, in accordance
with the band theory of ferromagnetism. Both the total
and spin-majority have bond paths with directionality
nearly equal to that of bcc Fe, with tan� �tan�� �
0:522 �0:337� and tan�"�tan�"� � 0:466 �0:402�, respec-
tively. This strong similarity is a result of the filling of
both T2g and Eg, orbitals by the spin-majority, as in the bcc
metal.

Interestingly the population of the d orbitals reducing as
Eg in the spin-majority band results in a change in the spin-
minority topology. Here, non-nuclear maxima form in the
tetrahedral holes. In Fig. 3, these can be seen acting to form
a pseudo-bcc topology by allowing each Fe atom to form
8�-bonds. This is due to the fact that d orbitals reducing as
T2g vastly outnumber those reducing as Eg at moments in
excess of 2:5 �B. As such, 12 bonds cannot be formed, as
that would require both the T2g and Eg representations. In
order to stabilize the structure, 8 directional bonds, tan� �
1:124, are created.

This change in topology is responsible for the magneto-
volume instability. Only two stable topologies exist in fcc
Fe: one corresponds to that observed in the PM-LS phase,
while the other is that of the spin-minority band of the HS
phase. The PM-LS (prototypical fcc) topology can be
formed so long as � � 1:3 �B. Moments in this regime
still allow the spin-minority to use the Eg representation
for directional bond path formation. In order for this to-
pology to transform to the HS topology, a CP annihila-

FIG. 3. Topology of the minority spin density in HS fcc Fe.
Only bond points (white) and maxima (gray) are shown for
clarity. The appearance of non-nuclear maxima allows the Fe
atoms to adopt a bcc-like topology. The inset shows the tetrahe-
dron of bond points around a non-nuclear maximum.

FIG. 2. Topology of fcc prototype. Only bond points (white)
and maxima (gray) are shown for clarity. Paramagnetic, LS, and
the total and spin-majority density in HS fcc Fe display this
topology. (Though not shown, cage points are present in the
tetrahedral holes.)
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tion—a topological catastrophe—must occur within the
spin-minority topology. The spin-majority topology, on
the other hand, remains unchanged through the phase
transition.

The transformation of the spin-minority topology re-
quires the 12 bond points about each atom in the LS phase
to become ring points. In conjunction, the tetrahedral cage
points must transform to non-nuclear maxima. At the same
time, ring points become the bond points shown in Fig. 3.
During the catastrophe, the curvature at the bond points
will become flat in one direction, e.g., a zero eigenvalue of
the Hessian (and a vanishing of the Gaussian curvature).
Thus, when the population in the Eg representation drops
(1:3 �B < �< 2:5 �B), bond paths in the spin-minority
band are weakened and the resultant topology is unstable.

By way of example, the directionality of the bond points
in the minority spin density, measured from the tetrahedral
hole, drops from tan�# � 0:380 to 0.240, as the moment is
changed from 1:3 �B to 2:1 �B at a � 3:563 �A. If, how-
ever, the moment is allowed to increase to 2:5 �B, the
number of bond paths is reduced to 8, but their direction-
ality is increased to 1.20. Thus, any moment in the range of
1:3 �B <�< 2:5 �B will not be observed. Instead, the
topology will spontaneously relax, resulting in a discon-
tinuous change in moment. In a one-electron picture, it is
the shift of electrons from the spin-minority to the spin-
majority Eg bands that brings about the phase
transformation.

In summary, we have applied Bader’s AIM theory to the
spin density in bcc and fcc iron. It has been shown that the
spin-majority and spin-minority topologies are different in
both bcc Fe and the HS phase of fcc Fe. In each case, the
two topologies accumulate charge in different regions due
to spin-spin correlation. While the spin-minority density in
bcc Fe has cage points between second neighbor atoms, the
spin-majority density has bond points. Here, it is the spin-
minority topology that resembles the total. In HS fcc Fe,
this picture is reversed. The spin-majority topology is
typical of fcc metals with bonds points lying between the
12 nearest neighbor atoms and cage points in both the
tetrahedral and octahedral holes. The spin-minority topol-
ogy, however, has cage points in only the octahedral holes.
Non-nuclear maxima are present in the tetrahedral holes.
These serve to form a pseudo-bcc topology with 8 bond
paths per atom.

Using the fact that the topology can only transform
through a catastrophe allows us to discern the two mag-
netic phase changes in fcc Fe. While describing these using
� as a local order parameter has offered conflicting results
computationally, the topological treatment is unambigu-
ous. A topological phase change does not occur in the PM-
LS phase change. The LS-HS transition is, however, ac-
companied by a catastrophe, and can be understood as a

topological phase transition, with the Bader bonding
graphs describing the topological orders.
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