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A Zeeman magnetic field can induce a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in spin-singlet
superconductors. Here we argue that there is a nontrivial solution for the FFLO vortex phase that exists
near the upper critical field in which the wave function has only spatial line nodes that form intricate and
unusual three-dimensional structures. These structures include a crisscrossing lattice of two sets of
nonparallel line nodes. We show that these solutions arise from the decay of conventional Abrikosov
vortices into pairs of fractional vortices. We propose that neutron scattering studies can observe these
fractional vortex pairs through the observation of a lattice of 1=2 flux quanta vortices. We also consider
related phases in noncentrosymmetric superconductors.
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A Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase pre-
dicted in Refs. [1,2] appears to have been discovered in
CeCoIn5 in the high magnetic field region of the super-
conducting phase diagram [3,4]. This discovery has gen-
erated tremendous interest both experimentally and
theoretically [5]. FFLO phases have also been argued to
be of importance in understanding ultracold atomic Fermi
gases [6] and in the formation of color superconductivity in
high density quark matter [7]. The understanding of these
phases has become a relevant and topical pursuit in phys-
ics. One central issue is the role vortices play in these
phases: in CeCoIn5 the FFLO phase appears deep within
a vortex phase [3,4]; and ultracold atomic Fermi gases can
be rotated to create vortices within an FFLO phase [8].

Here we address the nature of the FFLO vortex phase.
Previous studies have concluded that the superconducting
gap function in this phase is, for example, ��R� �
cos�qz��n�r� where the magnetic field is applied along
the ẑ direction, ẑ � r � 0, and �n�r� describes a vortex
lattice constructed from a Landau level (LL) with index
n [9–13]. This solution has intersecting spatial nodes along
planes perpendicular to the z axis and along the vortex lines
parallel to the z axis. We show that there is another realistic
solution for the FFLO vortex phase in which there are only
spatial line nodes in the gap function. We show that the
existence of this solution is a consequence of the decay of
conventional vortices into pairs of fractional vortices.
These fractional vortices exist because of the broken trans-
lational symmetry inherent in FFLO superconductors. By
suitably choosing an order parameter that correctly exhib-
its this broken translational symmetry, these fractional
vortices naturally appear within the theory. We propose
that a small angle neutron scattering (SANS) measurement
of the resulting magnetic field distribution may observe a
lattice of 1=2 flux quanta near to the upper critical field. We
further argue that this phase is stable within weak-coupling
theories of superconductivity and consider related phases
in noncentrosymmetric (NC) superconductors.

We use a phenomenological approach pioneered by
Buzdin and Kachkachi to describe the FFLO phase [11–
14] and extend it to include NC superconductors. We begin
with the following free energy
 

F �
Z
d3Rf�j�j2 � �j�j4 � �j�j6 � �jD�j2

� �jD2�j2 ��j�j2jD�j2 � ������2�D��2

� ���2�D����2� � 	B � ����D�� � ��D����g; (1)

whereD � 	ir	 2eA andB � r
A. The coefficients
that appear in this free energy are typically determined
from a microscopic BCS theory [14]. The 	 term applies
only to NC superconductors. It results in the helical phase
discussed previously [15]. In this phase, the gap function
becomes ��R� �  1e

iq�R. The orientation of q is deter-
mined by the free energy invariant denoted by 	 in Eq. (1).
We have chosen this invariant so that the theory applies to
Li2Pt3B with point group O [16]. Consequently, q is par-
allel toB. With 	 � 0, Eq. (1) has been justified previously
[14].

We consider a magnetic field along the ẑ direction and
ignore screening currents in determining the high field
ground state structure of the gap function (this is reason-
able for strongly type II superconductors). In the normal
state there will be translational invariance along the mag-
netic field direction. Therefore, Fourier modes along this
direction will be eigenstates of the linear gap equation.
Typically, the eigenstate with the lowest energy corre-
sponds to the Fourier mode q � 0. However, in FFLO
superconductors, the eigenstate with the lowest energy
has finite q. The states �q are degenerate and this degen-
eracy is broken by nonlinear terms in the free energy.
Consequently, to describe the FFLO phase near the upper
critical field, it suffices to keep the two modes �q. We
therefore write ��R� �  1�r�eiqz �  2�r�e	iqz, where r is
orthogonal to the magnetic field and q is parallel to the
field. This yields the following free energy for the new
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order parameter  � � 1;  2�:

 F � Lz
Z
d2rf�1j 1j

2 � �2j 2j
2 � �1j j

4 � �2j 1j
2j 2j

2 � �j j6 � 6�j j2j 1j
2j 2j

2 � �1�jD 1j
2 � jD 2j

2�

� �2�jD
2 1j

2 � jD2 2j
2� ���jD 1j

2j 1j
2 � jD 2j

2j 2j
2� � ���D 1�

2� �1�
2 � �D 2�

2� �2�
2 � c:c:�

� 4���D 1� �1�D 2� �2 � c:c:� ����D 1� �1�D 2�
� 2 � c:c:� ���jD 1j

2j 2j
2 � jD 2j

2j 1j
2�g; (2)

where Lz is the size of the system along the z direction,
D � �Dx;Dy�, and c.c. means complex conjugate. The
coefficients in Eq. (2) now depend upon q [17]. For
FFLO superconductors �1 � �2. Equation (2) should be
optimized with respect to q and we assume this has been
done. This ensures that there is no net current flowing
along the z direction [11,15].

The choice of order parameter  manifestly exhibits the
broken translational symmetry that characterizes the FFLO
state. This broken symmetry is hidden when considering
�. By considering explicitly, new and general features of
the theory appear naturally. In particular, notice that Eq. (2)
is independent of separate rotations of the phases of  1 and
 2, revealing a global U�1� 
U�1� gauge invariance. This
follows from translational invariance of the normal state
along the z direction and usual gauge invariance. In par-
ticular, consider a general term  n1 

m
2 � 

�
1�
p� �2�

q appearing
in the free energy; usual gauge invariance requires n�
m	 p	 q � 0 and translational invariance requires n	
m	 p� q � 0. These two conditions imply that n � p
and m � q which leads to the U�1� 
U�1� invariance. A
U�1� 
U�1� symmetry has been examined to discuss pos-
sible topological structures in two-band superconductors
[18]. Related topological structures have also been dis-
cussed in other contexts [19–21].

The vortices of a U�1� 
U�1� theory can be classified
[18] by two integers (n, m) which denote a 2n
 phase
change in  1�r� and a 2m
 phase change in  2�r� as the
vortex core is encircled. Of particular interest here are the
�1; 1�, �1; 0�, and �0; 1� vortices. The �1; 1� vortex is the
usual Abrikosov vortex and it contains a magnetic flux of
�0 (the usual flux quantum). In the FFLO phase, when
j 1j � j 2j (often called the LO phase), the corresponding
�1; 0� vortex contains a fractional flux �0=2 [18]. We are
interested in the appearance of bound pairs of these vorti-
ces in the vortex lattice phase. Consequently, we consider
generalized Abrikosov vortex lattice states and show the
usual FFLO vortex solution is often unstable to a new
lattice solution. In this new solution each of the conven-
tional �1; 1� vortices decays into a pair of �1; 0� and �0; 1�
vortices.

We now turn to an analysis valid near the upper critical
field. The vortex solutions are eigenstates of the operator
D2 � �	ir	 2eA�2 which has eigenvalues �2n� 1�=l2

and l2 � �0=�2
H� and n � 0; 1; 2; . . . is the LL index.
The usual BCS theory predicts a n � 0 LL solution is the
most stable solution, but it has been shown that for FFLO

superconductors n > 0 LL solutions can also be stable [5].
It is well known that the LL exhibit a macroscopic degen-
eracy. Abrikosov exploited this degeneracy to construct a
vortex lattice solution which we label as �n�r� [22]. We
label the unit cell of the vortex lattice by the lattice vectors
a � �a; 0� and b � �b cos�; b sin��. We take r, a, and b to
be in units l. Then ab sin� � 2
 gives one flux quantum
per unit cell. In this basis, we set  �r� � ��1�n�r�;
�2

~�n�r� ���, where ~�n�r� �� � e	i�yx�n�r� ��. The
additional phase factor that appears in ~�n ensures that both
 1 and  2 lie in the same LL. It appears as a consequence
of applying a translation in a uniform magnetic field. The
new feature in this analysis is the appearance of the trans-
lation vector � � ��x; �y� that displaces the nodes of the
two components ( 1,  2). Previous results can be recov-
ered with � � 0 [11–13]. A similar solution has been used
for UPt3 [23]. Substituting the above solution for  �r�
yields the free energy density (here we have considered
only the n � 0 LL)
 

f� ~�1j�1j
2� ~�2j�2j

2� ~�1�A�0�j�j4���2 ~�1� ~�2��A���

	2 ~�1�A�0��j�1j
2j�2j

2���A�0�j�j
6

���9�A���	3�A�0��j�j
2j�1j

2j�2j
2; (3)

where the coefficients ~�1, ~�2, ~�1, and ~�2 do not depend
upon the vortex lattice structure [24]. The vortex lattice
structure appears entirely in the generalized Abrikosov co-
efficients �A��� � 2


R
u:c: d

2rj�0�r�j
2j�0�r� ��j

2 and
�A��� � �2
�2

R
u:c: d

2rj�0�r�j
4j�0�r� ��j

2. Using the ap-
proach of Ref. [12] yields

 �A��� �
X
G

e	G
2=2eiG�� (4)

and

 �A��� �
X
G;G0

eiẑ��G
G0�=2eiG��e	�G
2�G02�G�G0�=2; (5)

where G � mg1 � ng2 (n, m are any integer), g1 �����������
2

p

x̂	
������������������
2
�2=

p
ŷ, g2 �

�������������
2
=

p
ŷ, and �� i �

ei�b=a. Below, the ground state lattice structures are nu-
merically found by minimizing Eq. (3) with respect �, ,
and �.

Single-q to multiple-q transition in NC superconduc-
tors.—Here, ~�1 � ~�2. When ~�1 < 0 and ~�2 > 0, �1 � 0
and �2 � 0, the stable structure is the usual hexagonal
vortex lattice. If ~�2 < 2 ~�1��

�0�
A �0� 	 �

0
A����=�

0
A��� then
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a second transition can occur into a state in which both �1

and �2 are nonzero. This transition has been found within
weak-coupling theories of NC superconductors [25–27].
This phase has two possible solutions. The first has � � 0
and remains a conventional hexagonal lattice. This occurs
when 2 ~�1 � ~�2 < 0. The second solution has � � �a�
b�=3 and occurs for 2 ~�1 � ~�2 > 0. To address which of
these possibilities occur, we note that weak-coupling mi-
croscopic studies show that the phase diagram contains a
line along which �2 � 0 [26,27]. This implies that the
finite � � �a� b�=3 phase is the ground state.

The spatial nodes of ��R� � eiqz�1�0�r� �

e	iqz�2
~�0�r� �� are given by j�1�0�r�j� j�2�0�r���j

and cos�qz� ��1 	 �2�=2� � 0, where �1 � �1�r� is the
phase of �0�r� and �2�r� is the phase of ~�0�r� ��. For
small �2, these zeroes lie on small circles surrounding each
of the zeroes of  1. Around these circles, the phase �1�r� �
� since we are encircling a vortex core of  1 (here,� is the
polar angle of the circle) and �2 � const since we are far
away from the zeros of  2�r�. Consequently, the nodes of
��R� are given by qz � �=2� n
� c, where c is a
constant and n is any integer. This describes the equation
of a helix spiraling about the z direction. This is depicted in
Fig. 1. As�2 grows, the pitch of the helix grows larger. It is
possible for two adjacent helices to merge for large enough
�2. This results in a crisscrossing lattice of line nodes like
that discussed below in the context of the FFLO case. This
analysis reveals that the �n;m� � �1; 1� Abrikosov vortices
have each separated into a pair of �1; 0� and �0; 1� vortices.
The �1; 0� vortices appear where  1�r� � 0 and the �0; 1�
vortices appear where  2�r� � 0.

Second order transition into the FFLO phase.—Here,
�1 � �2, � � 0, and there is a second order transition
from the normal state into the FFLO state. There are three
possible solutions for this phase. The first has �2 � 0 and
�1 � 0; this is the FF (or single-q) state with a conven-
tional hexagonal lattice. This phase is stable when �2 ~�1 �
~�2��A��� 	 2 ~�1�A�0�> 0 for all �. One of the other two
solutions is stable if �2 ~�1 � ~�2��A��� 	 2 ~�1�A�0�< 0

for any �. The second solution corresponds to j�1j �
j�2j with � � 0 and is the LO (or multiple-q) phase with
a conventional hexagonal lattice. This state requires 2 ~�1 �
~�2 < 0 to be stable. The final state corresponds to j�1j �

j�2j with a rectangular unit cell for which b=a �
���
3
p

and
� � �a; b�=2 for ~�2 � 0. More generally, we find the same
lattice but with b=a �

���
3
p

(this includes a possible first
order FFLO transition). These solutions are stable for
2 ~�1 � ~�2 > 0. To understand which of these states may
be stable within microscopic theories, note that the calcu-
lations of Ref. [11] imply that there is a line in the phase
diagram along which ~�2 � 0 in the weak-coupling theory
of a clean s-wave superconductor with vortices. Near this
line, � � �a; b�=2 gives the stable phase. Whenever the FF
phase is close in energy to the LO phase (that is j ~�2j 
~�1), then the LO vortex phase with � � �a; b�=2 is the
stable vortex phase since �A��� � �A�0� for any � � 0. It
appears that this is generic for weak-coupling theories
where varying gap symmetry, impurities, and vortices
lead to a variety of different phase diagrams containing
both the FF and LO phases [11,13,14,28].

We now focus on the LO phase with � � �a; b�=2. This
phase can be understood as having conventional �1; 1�
Abrikosov vortices that have each separated into a pair of
�1; 0� and �0; 1� vortices. As discussed previously the �1; 0�
and �0; 1� vortices in this LO phase can be interpreted as
containing flux �0=2. To understand if this may manifest
itself experimentally, we have performed an Abrikosov
analysis [22] on Eq. (2) to determine the field distribution
hs�r�ẑ due to screening currents to lowest order in the gap
function. This results in hs�r� / j 1�r�j

2 � j 2�r�j
2.

Consequently, for ~�2 � 0, hs�r� has a hexagonal symmetry
even though the nodes of  1�r� and  2�r� separately form a
rectangular lattice with b=a �

���
3
p

. A measurement of the
hexagonal unit cell lattice vector will yield a flux per unit
cell that is �0=2 (this generalizes to nonhexagonal unit cell
geometries). This can be seen through SANS measure-
ments by observing the Bragg peaks of the vortex lattice
with neutrons that have momenta perpendicular to the
applied field. We emphasize that our solution is valid at
Hc2 and at lower fields it is possible that the �0=2 vortices
are more tightly bound (e.g., � � 0 but j�j< ja� bj=2).

Here we give the positions of the line nodes for � �
�a; b�=2 and b=a > 3. In the x, y plane the point zeros lie
along the lines y1 � 	3b=4, y2 � 	b=4, y3 � b=4, and
y4 � 3b=4 (the unit cell has doubled along the y direction).
The x, z coordinates (measured in units a, 
=q, respec-
tively) for these four lines are given by z1 � n� 1=2	
x1=2, z2 � n� 1=2� x2=2, z3 � n	 x3=2, and z4 � n�
x4=2. This results in a lattice of crisscrossing nodal lines as
viewed from a direction normal to the y axis (Fig. 2).

For the FFLO phase in CeCoIn5, the � � �a; b�=2 solu-
tions may help to understand some experiments [5]. In
particular, measurements in the FFLO vortex phase find
that the thermal conductivity parallel to the applied field is

FIG. 1. Helical spatial line nodes in the gap for the multiple-q
phase of NC superconductors. The centers of the helices form a
2D hexagonal lattice perpendicular to the field.
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greater than that perpendicular to the applied field [29].
This is not expected for a gap function with spatial plane
nodes perpendicular to the field (which occurs if � � 0).
However, it can be qualitatively understood if � �
�a; b�=2. Note that magnetic order in the FFLO nodal
planes has been proposed [30] and this may account for
the thermal conductivity results when � � 0.

In conclusion, we have argued that the vortex lattice
phases in FFLO and NC superconductors contain gap
functions with spatial line nodes that form a variety of
three-dimensional spatial configurations. These configura-
tions include a lattice of helices in NC superconductors and
a crisscrossing lattice of nodal lines in FFLO superconduc-
tors. These structures stem from the breakup of conven-
tional vortices into pairs of fractional vortices. SANS
studies of the magnetic field distribution can provide evi-
dence for these structures.
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FIG. 2 (color online). Crisscrossing lattice of nodal lines in the
FFLO vortex phase with � � �a; b�=2. The � in the top figure
shows the nodes perpendicular to the applied magnetic field for
z � 0. As z is changed slightly, these nodes move as illustrated
by the arrows in the upper right of this figure. The lower figure
shows a cross section as seen from the y direction. The different
colored lines correspond to the nodal lines with different y
positions.
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