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Effects of Interactions in Transport through Aharonov-Bohm-Casher Interferometers
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We study the conductance through a ring described by the Hubbard model (such as an array of quantum
dots), threaded by a magnetic flux and subject to Rashba spin-orbit coupling (SOC). We develop a
formalism that is able to describe the interference effects as well as the Kondo effect when the number of
electrons in the ring is odd. In the Kondo regime, the SOC reduces the conductance from the unitary limit,
and, in combination with the magnetic flux, the device acts as a spin polarizer.
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Advances in semiconductor technology have provided
useful tools to test fundamental concepts of quantum phys-
ics, such as the superposition principle and the existence of
topological phases [1]. Beautiful demonstrations of these
are studies of the Aharonov-Bohm (AB) effect [2] in
mesoscopic rings, particularly with embedded quantum
dots (QDs) [3,4]. The effect of interactions in these systems
is still a matter of debate. Despite the enormous effort to
describe transport through interacting regions [5], at
present we do not have a unified procedure to extend the
results of the single particle case to many-body cases. In
the case of transport through interacting rings, even know-
ing the exact eigenstates of the ring, there is no simple
procedure to calculate the conductance G. When the cou-
pling V of the ring to the conducting leads is small, Jagla
and Balseiro (JB) used a perturbative expression in V for G
that is exact for any V in the noninteracting limit [6].
Similar equations were used recently, assuming that a
Zeeman term destroys the Kondo effect in the system
[7,8]. Another expression in order V> was proposed last
year [9]. Unfortunately, these expressions are not valid in
the Kondo regime, in which the number of electrons in the
ring is odd, because the resulting Kondo physics cannot be
described by perturbation theory in V. The ideal conduc-
tance in the Kondo regime was recovered by mapping the
model into an impurity Anderson model, but in this for-
mulation interference effects were lost [8].

Recently, the Aharonov-Casher (AC) effect [10], the
charge-spin dual of the AB effect, has been demonstrated
experimentally in semiconductor mesoscopic rings
[11,12]. The AC phases are originated due to the Rashba
spin-orbit coupling (SOC) in the ring, resulting from elec-
tronic motion in the presence of an electric field normal to
the plane of the ring. The interference between electrons of
given spin traveling clockwise and anticlockwise produces
a strong modulation of the electronic current through the
device. Recent theoretical research [13] has successfully
explained the modulation of the conductance in terms of
noninteracting electrons. However, the single-electron pic-
ture turns out to be inadequate to describe electronic
transport in the strongly interacting case, particularly in
the Kondo regime, as we will show.
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In this Letter, we describe a systematic procedure to
calculate the equilibrium conductance G through a ring
of an interacting system weakly coupled to conducting
leads that takes into account both the effects of interference
and correlations in the presence of a magnetic flux and
SOC. Using a non-Abelian gauge transformation (NAGT),
we show that for on-site interactions, the SOC can be
absorbed in opposite AC phases for spin up and down in
an adequately chosen quantization axis. For a Hubbard
model (that describes a ring of an even number of QDs)
in the absence of SOC, G vanishes when the magnetic flux
amounts to half a flux quantum. For other fluxes in the
Kondo regime, G reaches the unitary limit (ideal conduc-
tance [4]). When the SOC is turned on, the ideal conduc-
tance is destroyed and G shows a strong spin dependence in
this regime.

Our first task is to derive the appropriate extension to the
Hubbard model to include the SOC in an adequate repre-
sentation that simplifies our subsequent calculations. To
illustrate the procedure, it is easier to begin with noninter-
acting electrons in the continuum. The correct Hamiltonian
for this case was derived by Meijer et al. [14]. The SOC is
Hsoc = /G - E X (p — eA), where o' is the Rashba con-
stant and E is the electric field, which in our case is in the z
direction, perpendicular to the plane of the ring. Including
SOC and the orbital effects of the magnetic field, but
neglecting the Zeeman term (usually several orders of
magnitude smaller than the Kondo energy scale in QDs
[4]), the Hamiltonian can be written in the form [13(b)]

Interacting Ring

FIG. 1. Scheme of the system.
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where Q = 1/(2m*r?), m* is the effective electron mass, r
is the radius of the ring, wy, = a/hr, a = ha'E,, ¢ =
Bmrr? is the magnetic flux, ¢y = h/e is the flux quantum
and o,(¢) = 0, cos¢ + o, sing is the Pauli matrix in the
radial direction, and ¢ is the azimuthal angle (see Fig. 1).
Although the Schrodinger equation Hyx(¢) = Ex(¢)
(where y is a spinor) has been solved [13], we are inter-
ested in a simplification of this equation that can be ex-
tended to the interacting case. This can be achieved by a
NAGT x(¢) = U(e)x'(¢), where the operator U(g) sat-
isfies the differential equation

o0l = [+ S
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It can easily be checked that in the transformed
Hamiltonian, H{; = U'H,U = —hQ8%/¢?, the mag-
netic flux and the SOC disappeared, and enter now in the
boundary condition, since y(27) = x(0) implies
X' 2m) = UT(2m)x'(0). The solution of Eq. (2) with
U0 = 1is

Ulp) = exp|: —io f:| exp[iﬁ' ‘g gl:| exp[ii go:|,
‘2 2 bo
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where iy = (—sin#, 0, cosf), 6 = arctan(wy,/), and
o' = @1+ (wso/Q)z-

To construct the tight-binding version of H{;, let us
assume that we have N sites, lattice parameter a (with
Na = 27rr) and site 0 at angle ¢ = 0. For simplicity we
consider only hopping between nearest neighbors (NN).
Then, we can take a constant hopping ¢ between all NN,
except between sites N — 1 and 0, in which the boundary
condition should be included. The matrix U(27) is easily
diagonalized in the quantization axis iy, and its eigenval-
ues are expli(Ppp + 0P ac)], where o = 1 ( — 1) for spin
up (down) in this direction, @5 = 27/ by, and P ¢ =
m{[1 + (wy/Q)?]/? — 1}. Therefore, destroying a parti-
cle with spin o at site N — 1 and creating it at site O should
be accompanied by the corresponding exponential factors.
On-site interactions are not affected by the NAGT. With a
convenient choice of phases, the transformed Hubbard
model in the ring becomes

N—1
H; _ Z t[ei((bAB+(T(DAC)/Nd;[-+1(TdiU + HC]

i=0,0
+ Udldydld, 4
i il
From the curvature of the dispersion relation at small wave

vector t = h?/(2m*a?), and then w,/Q = aN/Q2wta).
Thus, the AC phase can be written as

Pac _ <Z>2 + (i)z _T 5)
N N 2ta N
Therefore, for large « or N, the properties of the system are
periodic with « as observed experimentally [11,12].

The fact that the SOC can be gauged away in one
dimension has been noted previously [15], but the explicit
form of the transformation has not been derived. This
transformation has important consequences. In the thermo-
dynamic limit the boundary conditions are irrelevant and
therefore the thermodynamic properties of the system
should be identical to those of the Hubbard model without
SOC. This is not obvious in alternative treatments [16]. In
particular, it seems that the opening of a spin gap in the
system requires long-range interactions.

To study the conductance, we must consider the
Hamiltonian of the complete system H = H; + H! +
Hy, where with the appropriate quantization axis [17]
and choice of phases H;, =135, c;r_l,(,c,-(, +
diie c;rﬂ,gci(, + H.c.) describe the noninteracting leads,
and Hy = V(Zocgad,\,/z,g + cirgdog + H.c.) is the cou-
pling between the ring and leads. As an example of a
system of few QDs, we consider the particular case N =
4, illustrated in Fig. 1. We assume that the leads are
described by a constant density of states p, = 1/W, and
we take for the bandwidth of the leads W = 60r (W is
usually much larger than ¢ in QD arrays). The Fermi level
is set at e = 0. To control the charge in the ring, we add to
H) a term —ngmd;rgdw that represents the effect of a
gate voltage. Our approximations to calculate G amount to
a truncation of the Hilbert space of H, and a slave-boson
mean-field approximation for the resulting generalized
Anderson model (GAM). H. can be diagonalized exactly
(numerically for not too large N). We retain only two
neighboring charge configurations with n and n — 1 parti-
cles, and we have chosen n = 4. Furthermore, we retain
only the lowest lying singlet state for 4 particles (|yg) with
energy E¢) and all doublets for 3 particles. This procedure
is valid for small enough V [18]. Calculating the matrix

elements of Hy in the truncated Hilbert space leads to a
GAM

Hoam = H, + ZE%WJS-UX%SH + Eglyg X
5o

+V Y (@l lggXy,lepe + He),  (6)
J,0,m=0,1
where |¢,) and E3, denote the jth eigenvector and eigen-

value of H in the configuration with 3 particles with spin
projection o, in ascending order of energy and

al, = Wildl, 103y, o = wildl, ). (D

Hgam can be expressed exactly in terms of a slave-
boson representation similar to that proposed in
Ref. [19: W3 X3, | = fL fio WKW — bTb,
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I\I’]30><\Ifé| —>f;-f0b, and |\I’é><‘lfjal — bif,,, where the
operators bT and f;-rg create a boson and a fermion, respec-
tively, and are subject to the constraint } ;, f;.rafj(, +
btb = 1, which is incorporated in the Hamiltonian with
a Lagrange multiplier A. We perform a saddle-point ap-
proximation in the bosonic degrees of freedom, which
reproduces the Kondo physics at low energies and tem-
peratures [19]. The problem becomes equivalent to an
effective noninteracting fermionic Hamiltonian, with pa-
rameters by, A (where by, = (b') = (b)), which are deter-
mined by minimization of the free energy. Thus, we can
use the two-terminal Landauer formula to calculate the
conductance, giving at zero temperature [5]

G=3G, (8)
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gator of the jth state of 3 particles with spin projection o in

where g

the isolated ring, and the functions A7 , are A7, =1 —
b(z)Vzg(,(,))Zmla,T,’wlz/(w — E},— A) fornp = ' and A7 =
b%Vzgsg)zma,Z(,EyZ/g/(w — E}, — A) for n # n/, where
g(,(,))(a)) is the Green’s function at site i of the correspond-
ing isolated lead (V = 0).

We have calculated G as a function of ®,5 for & = 0
and V, = 0.8z, which corresponds to the nonmagnetic
regime ng) < EBSU). In this regime, correlations play a
minor role, and one expects that the JB formula [6], which
is exact in the noninteracting case, gives accurate values
for G. Our results (not shown) are very similar, with low
values of G(®,p) and G(7) = 0 due to destructive inter-
ference. In fact, for small V it can be demonstrated that
both approaches are equivalent in this regime. We have
also checked that in the noninteracting case (tight-binding
model), the results of the JB formula coincide qualitatively
to those obtained by Shen ef al. and Molnar et al. [13] for
free electrons.

The difference ng) - ES; can be reduced and turned
negative applying a negative gate voltage. The most im-
portant results of this work are those obtained in this case,
i.e., when the ring is in the mixed-valence or Kondo
regime. Results for &« = 0 are presented in Fig. 2(a).
Because of symmetry [20], it is enough to show G in the
interval 0 =< ®,5 = 7.

For small enough A/ IE(()3) — E(()4)|, where A =
wpoV2(lad, |? + la),|?), charge fluctuations are frozen
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FIG. 2 (color online). (a) Conductance and (b) occupancy as a
function of magnetic flux for @ =0, V, =0, U = 6¢, and
several values of V.

and a clear signature of Kondo physics is displayed in
the characteristic plateau in G at the ideal conductance
Gy (the unitary limit) [4]. This is shown in the figure for the
smaller values of V at small fluxes. The dependence of G
with flux, is related to the corresponding dependence of the
energy levels and matrix elements with ¢. For larger V and
®,p ~ , the system is in the intermediate valence regime,
as reflected in Fig. 2(b) in which the total occupancy of the
configuration with three particles n; =Y ;. firy s
shown. Therefore, the conductance deviates from the uni-
tary limit.

Independently of the other parameters, G vanishes at
®,5 = 7r. Within our formulation, at this point the states
of the n =3 configuration become doubly degenerate
between states of different parity. The matrix elements
a}l, entering Eq. (9) have the same modulus but different
sign, therefore producing a complete destructive interfer-
ence inside the absolute value. To our knowledge, there are
no calculations so far showing at the same time this de-
structive interference and ideal conductance in the Kondo
regime. The JB expression gives values below 0.1G,, for all
®,p and parameters of Fig. 2.

The effect of the SOC on the total conductance is
dramatic in the Kondo regime. The results presented in
Fig. 3 show dips (additional to that of ®,5 = 77), which
are larger as a grows. The main difference with the case
a = 0 is that ny # ng, therefore producing a partial de-
struction of the Kondo resonance, mimicking the effect of a
Zeeman term. This effect is larger for lower A (when the
system is deeper inside the Kondo regime), which for the
parameters of Fig. 3 corresponds to ®,5 ~ =0.37. For
®,5 = 7, complete cancellation is not achieved due to the
effect of the AC phase (see inset in Fig. 3).
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FIG. 3 (color online). Conductance as a function of flux for
V = 3.5t and different a. Other parameters as in Fig. 2.

Another important effect of the SOC in the Kondo
regime is that it leads to currents with significant spin
polarization. If a spin o (up or down) in the quantization
direction 71, is injected in the ring at the right lead (¢ = 0)
it comes out at the left lead (¢ = ) with spin o in the
direction 7j, = (sin#, 0, cosé) or vice versa [17]. The cor-
responding conductance G, is spin dependent, as shown in
Fig. 4. The ratio of the conductances can reach a factor 2 or
larger with ideal Gy (G)) for flux ® 5 = 0.1577 (—0.157)
and rather small « [20]. For these values, the z component
of the quantization axis for any ¢ is larger than 0.99 [17].

In summary, we have presented an approach to calculate
the conductance through a ring of interacting QDs threaded
by a magnetic flux and with spin-orbit coupling « in the
Kondo, mixed-valence, and nonmagnetic regimes. The
effects of « are incorporated into Aharonov-Casher phases
using a gauge transformation that leads to the Hubbard
Hamiltonian Egs. (4) and (5). Using a method based on a
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FIG. 4 (color online). Conductance for each spin as a function
of flux for the parameters of Fig. 3 and different a.

mapping of the relevant exact eigenstates of the ring onto
an effective multilevel Anderson impurity and with the use
of a slave-boson representation, we are able to describe the
properties of the ring connected to the leads. The method is
valid for small values of the coupling between rings and
leads V and small values of magnetic field B, such that the
Zeeman energy is much less than Tx. When the ring is in
the Kondo regime, we obtain ideal conductance for & = 0
and magnetic flux far from half a flux quantum, for which
there is complete destructive interference. The effect of a
small nonvanishing « is to produce a progressive destruc-
tion of the Kondo effect, decreasing the conductance and
leading to a strong spin dependence of it. Extensions to
include the Zeeman term or other interacting systems with
local interactions are straightforward.
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