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We give a heuristic argument for disorder rounding of a first-order quantum phase transition into a
continuous phase transition. From both weak and strong disorder analysis of the N-color quantum Ashkin-
Teller model in one spatial dimension, we find that, for N � 3, the first-order transition is rounded to a
continuous transition and the physical picture is the same as the random transverse field Ising model for a
limited parameter regime. The results are strikingly different from the corresponding classical problem in
two dimensions where the fate of the renormalization group flows is a fixed point corresponding to
N-decoupled pure Ising models.
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The effect of disorder on continuous classical phase
transitions has been intensely studied over many decades
[1], but less is known about its effect on first-order tran-
sitions. Imry and Wortis [2] argued that arbitrarily weak
disorder can actually round a classical first-order transition
into a continuous transition. Subsequently, Hui and Berker
[3] and Aizenman and Wehr [4,5] have made important
contributions to this topic. In light of numerous recent
experiments involving quantum phase transitions in sys-
tems that inevitably contain many sources of disorder, the
issue of disorder rounding in first-order quantum phase
transition (QPT1) has acquired considerable urgency.

There are two important questions: (a) Can disorder
convert a QPT1 to a continuous one? (b) Might the theorem
for a disordered classical system require modification in a
quantum context? There is, as we shall see, a simple
intuitive affirmative answer to (a), but (b) is more subtle
because statics and dynamics are entangled in a quantum
phase transition. To answer (b) and to explore more fully
the issues involved, we consider below a model and study it
in considerable detail. It is important to note that for even
the classical random bond Potts model for q > 4 and d �
2, for which the pure system has a first-order transition, the
critical exponents of the disordered system do not belong
to the simple universality class of the pure Ising model—
although the critical exponent � � 1, all other critical
behavior is different [6].

We will answer question (a) by a heuristic argument
patterned along an argument by Berker [7], although we
differ in our analysis for the case of continuous symmetry.
Let the disorder couple to the Hamiltonian in such a way
that its symmetry is unchanged. For example, disorder may
couple to a nearest neighbor bond (generally to energylike
variables) without affecting the symmetry. In contrast, a
site random field breaks the symmetry explicitly. Consider
changing a generic tuning parameter g that may be the ratio
of the amplitudes of two noncommuting terms in the
Hamiltonian, which controls the quantum fluctuations
and results in a first-order transition.

We would like to show that, in the presence of disorder,
coexistence of phases is not possible at the transition, and
the quantum fluctuations do not have a scale. If this is true,
and if the state corresponding to g � 0 is still a broken
symmetry state (this is why we imposed the specific re-
quirement on disorder earlier) and the g � 1 is the quan-
tum disordered state, the conclusion must be that the
transition has been converted to a quantum critical point.

The proof is by contradiction. Assume that the first-
order transition is at gc, implying coexistence of phases.
However, in the presence of disorder there will be local
fluctuations of gc. Thus, within a putative quantum disor-
dered region, randomness can nucleate an ordered region
of linear dimension L, with a gain in the volume energy
/ Ld=2 (assuming the central limit theorem), while the
price in the surface energy is / Ld�1. The same is true
for a putative ordered region. Therefore, for d < 2 (dis-
crete), the picture is that of a ‘‘domain within domain,’’ and
there is no scale, as required for a QPT1. In contrast, for
g < gc nucleation of one broken symmetry phase within
another does not gain any energy (disorder does not break
the relevant symmetry), but the surface energy is increased.
Therefore, by contradiction, coexistence of phases is not
possible, and the transition at gc must be continuous. We
have tacitly assumed that the transition involves a broken
symmetry. If this is not the case, there is no particular
reason for a sharp transition to remain at gc, and the
disorder will simply smear out the transition.

The case of continuous symmetry is a little subtle. While
one may like to argue that the domain wall energy is Ld�2

[7], as in the Imry-Ma argument, this is typically incorrect.
If the domain wall connects a broken symmetry state with
an unbroken symmetry state, where the amplitude of the
order parameter vanishes, the domain wall energy is still
Ld�1, as in the case of discrete symmetry. However, if the
QPT1 is effected by tuning a ‘‘magnetic field’’ that changes
the state from one broken symmetry direction to another,
the domain wall energy is indeed Ld�2, and the borderline
dimensionality is d � 4. Of course from Mermin-Wagner

PRL 100, 015703 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
11 JANUARY 2008

0031-9007=08=100(1)=015703(4) 015703-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.015703


theorem there is no long range order in d � 2 at any finite
temperature, by either first-order or continuous transitions;
so, for the classical case the question is moot at d � 2.

There are no simple arguments known to us for the
borderline dimensionalities, but from the rigorous version
of the Imry-Ma argument for the random field case [4,5,8],
it is safe to conjecture that the above argument should also
hold for these cases, because there is a close connection
between the two problems as noted by Imry [9]. Note that
the dynamic critical exponent z does not enter in this
analysis—all we need is the extensivity of the ground
state energy and its normal fluctuations in the thermody-
namic limit. The principal disordering agent that washes
out the coexistence is the fluctuations due to impurities and
not quantum fluctuations. Quantum fluctuations can only
help the process of smoothing the coexistence. Of course
the fate of the system in dimensions higher than 2 must
depend on the quantum fluctuations. In addition, the actual
dynamics of the system must involve these fluctuations as
well.

It is useful to note that, in contrast, the Harris criterion
[1] that determines the influence of impurities at a critical
point, inter alia a quantum critical point, does depend on
the quantum dynamics. In order to see this, let us rephrase
the Harris criterion along an argument essentially due to
Mott [10]. On one hand, disorder in a domain of linear
dimension, �, the correlation length of the pure system
defined by the decay rate of the equal time correlation
function, will give rise to fluctuations of the quantum
critical point gc of fractional width �g� ��d=2. On the
other hand, �gmust be less than the reduced distance from
the quantum criticality implied by �, that is���1=�, for the
criticality to remain unchanged, where � is the correlation
length exponent of the d-dimensional quantum system at
zero temperature. Hence, � > 2=d. Otherwise, the system
may be described by a new disorder fixed point for which
the same relation will apply with the replacement of the
critical exponent of the pure system by the critical expo-
nent of the new fixed point, as in the theorem of Chayes
et al. [11]. In either case the quantum dynamics is impor-
tant because the relevant length scale close to the critical
point is the diverging correlation length, �. By contrast, the
argument involving QPT1 is restricted by a finite correla-
tion length; hence, the balance is between the volume
energy and the surface energy of a fluctuating domain
nucleated by the impurities.

We now turn to question (b) and study, using both a
perturbative renormalization group and a real space deci-
mation procedure [12–14], a one-dimensional quantum
spin chain, the random N-color Ashkin-Teller model
[15–17] in the presence of disorder. We consider the
regime in which the pure model has a QPT1. The corre-
sponding classical problem in two spatial dimensions
where the quenched disorder is isotropic, the renormaliza-
tion group flows curl back to the pure decoupled Ising fixed
point [18,19], at least for weak couplings.

The Hamiltonian of the system is [20]

 H � �
XN
��1

XL
i�1

�Ji�
���
3;i �

���
3;i�1 � hi�

���
1;i �

� �
XN
�<�

XL
i�1

�Ji�
���
3;i �

���
3;i�1�

���
3;i �

���
3;i�1 � hi�

���
1;i �

���
1;i �:

(1)

Here, Latin letters index lattice sites, Greek letters label
colors, and the�’s are the Pauli operators. The Ji and hi are
random variables taken from a distribution restricted to
only positive values, while � is a disorder independent
positive constant. For the random transverse field Ising
model (� � 0), a local gauge transformation may be per-
formed to make all couplings positive, so the original
couplings can take negative values. The coupling between
colors destroys this freedom so we must restrict ourselves
to positive couplings from the outset. We have parame-
trized the system so that the intercolor couplings are pro-
portional to the bond or field at that site. We also restrict
ourselves to � � 0. Note the invariance of the Hamiltonian
with respect to the following duality transformations:
����3;i �

���
3;i�1 ! ��

1;i, �
���
1;i ! ����3;i �

���
3;i�1, Ji ! hi, where �’s

are the dual Pauli operators. For the uniform system and
with N � 3 and for � > 0, there is a first-order transition
from a paramagnetic to an ordered state [15–17,21].

For weak disorder and weak four-spin coupling, we can
consider the continuum action in terms of Majorana fer-
mions. The random N-color quantum Ashkin-Teller model
can be described by an O�N� Gross-Neveu model with
random mass [22]. The Gross-Neveu model action is given
by
 

S �
vF
2

Z
x;�

�XN
��1

� ���
�

1

vF
@��3 � @x�1 �m�x; ��

�
 ���

�
g
2

�XN
��1

� ��� ���
�

2
�
; (2)

where vF is the Fermi velocity,
R
x;� 	

R
dxd�, and  ��� �


 ����y, � ��� � 
 ����Ti�2. In the above equation the
random mass m�x; �� follows Gaussian white noise
distribution such that the correlation is given by
m�x; ��m�x0; �0� � �	�x� x0�. After averaging over disor-
der using n replicas, we obtain
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2
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��1
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�
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���
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0; �0�: (3)
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Here the index a corresponds to replicas. Simple power
counting shows that � is a relevant operator with scaling
dimension 1 and g is a marginal operator. For even number
of colors (N � 2M), this action can be expressed in terms
of M Dirac fermions and can be bosonized [23]; for N �
2M� 1 there will be a leftover Majorana fermion, which
makes the analysis more complex but the physical answers
are the same. A perturbative renormalization group calcu-
lation following Giamarchi and Schulz [24] up to O�~��,
O�~�g�, andO�g2� lead to the following recursion relations,
where ~� � �a, with a being the lattice spacing:

 

d~�

dl
� ~��

�2M� 1�

�
~�g; (4)

 

dg
dl
�
�M� 1�

�
g2 �

~�g
3�

; (5)

 

dvF
dl
�

�
z� 1�

~�

3�

�
1�

g
�

��
vF; (6)

where z is the dynamic exponent. These recursion relations
are valid for g=� 1. For vF to remain fixed, zmust vary
continuously:

 z � 1�
~�

3�

�
1�

g
�

�
: (7)

There is one unstable fixed point �� � g� � 0 (free fer-
mion fixed point with z � 1), and both disorder and four-
spin coupling constants are relevant perturbations at this
fixed point and flow away to the strong coupling regime.
This makes it necessary to attack the problem using a
strong disorder renormalization group approach.

The above flow equations should be contrasted with the
flow equations of the classical N-color Ashkin-Teller
model with quenched disorder. In the classical case the
disorder averaged action is local and disorder as well as g
are marginal perturbations. For this reason one has to
calculate up to O��2�, O�g2�, and O��g� [18,19,25]. In
the replica limit, n! 0, the flows curl around and end up at
the decoupled Ising fixed point, at least at weak couplings.

To solve the random system, we will now employ the
strong disorder renormalization group technique [12–
14,26]. There are some similarities with the analysis of
the quantum q-state Potts chain for q > 4 for which it was
argued that this transition is described by the infinite dis-
order fixed point, at least when the disorder is strong [27].
The decimation equations can be inferred from the struc-
ture of the energy levels. We will demonstrate the calcu-
lation for a site decimation and note that the bond
decimation equations follow from duality. If the magnetic
field on site i is the largest coupling, the unperturbed
Hamiltonian is

 H0 � �hi
XN
��1

����1;i � �hi
X
�<�

����1;i �
���
1;i (8)

and the ground state is j !! � � � !i with energy E0 �

�Nhi � �
N
2��hi. The Hilbert space is written as a tensor

product of the spins at site i for each color. There areN first
excited state of the form j ! ! � � �i, where one color has
its spin flipped. Each of these states has energy E1 � E0 �
2hi � 2�N � 1�hi�. In general, the rth energy level has �Nr �
states with r colors flipped and energy Er � E0 � 2rhi �
2r�N � r�hi�. The coupling of site i to the rest of the
system is the perturbation part:

 V � �Ji�1

XN
��1

����3;i�1�
���
3;i � Ji

XN
��1

����3;i �
���
3;i�1

� �Ji�1

X
�<�

����3;i�1�
���
3;i �

���
3;i�1�

���
3;i

� �Ji
X
�<�

����3;i �
���
3;i�1�

���
3;i �

���
3;i�1: (9)

Within second-order degenerate perturbation theory, the
Ising terms connect the ground state to the first excited
states only, while the four-spin couplings connect to the
second excited states. Thus, the 4N-fold degeneracy of the
ground state (due to the neighboring spins) is split by V:
 

E00 ’ E0 �
X
�

�Ji�1�
���
3;i�1 � Ji�

���
3;i�1�

2

2hi � 2hi��N � 1�

�
X
�<�

��Ji�1�
���
3;i�1�

���
3;i�1 � �Ji�

���
3;i�1�

���
3;i�1�

2

4hi � 4�hi�N � 2�
: (10)

The cross terms yield an effective Ising coupling between
sites i� 1 and i� 1 given by

 

~J �
Ji�1Ji

hi
1� ��N � 1��
(11)

and an effective four-spin coupling

 

~� ~J �
�2

2

Ji�1Ji
hi
1� ��N � 2��

: (12)

Since hi was the largest coupling in the system, the new
effective two- and four-spin couplings are both smaller
than their original respective counterparts. We see that
the decimation results in new effective bonds and fields
given by

 

~J i �
JiJi�1

hi�
; ~hi �

hihi�1

Ji�
; (13)

where we have introduced � � 1� �N � 1��, and � also
renormalizes as

 

~� �
�2
1� �N � 1���
2
1� �N � 2���

: (14)

Equation (13) exhibits the duality present in Eq. (1) upon
interchange of the couplings h$ J. As long as � is ini-
tially less than some �c�N�, it is clear that �will be reduced
by this decimation.
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Let � to be the largest energy scale still active in the
problem and define  � ln�=J, � � ln�=h, and � �
ln�I=�, where �I is the strength of the original strongest
bond. Then the distributions of logarithmic bonds and
fields at energy �, denoted by P�� and R���, respectively,
satisfy a set of flow equations. (We suppress the depen-
dence of P and R on �.) For P�� we get
 

@P
@�
�
@P
@
� R�0�

Z
d 0P� 0�P� �  0 � ln��

� �P�0� � R�0��P�� (15)

with a similar equation for flow of R upon the replacement
P$ R, as expected by duality. The effect of the coupling
between colors is to simply shift the convolution in the flow
equation. If the initial distributions are equal, the fixed
point coupling distributions are of the same form as in
the Ising case, and the rescaling of energies by � makes the
ln� term irrelevant once one is below an energy scale on
the order of �I=� [27,28]. This is clearly true if � < �c�N�
initially. Then � is lowered towards zero; hence, � is
pushed down towards 1 and ln�! 0. We see, therefore,
that for any finite value of N, the criticality of the system is
that of the infinite randomness Ising fixed point. Note that
from symmetry � does not renormalize for either the clock
model or the Potts model [27], unlike the present case. So,
the above analysis is all that we need to perform.

If the initial value of � is larger than �c�N�, � grows
without bound, so the energy cutoff below which one must
be to observe universal scaling behavior of random trans-
verse field Ising model is driven to zero; in other words, the
strong disorder renormalization group analysis breaks
down. This breakdown of scaling may imply persistence
of QPT1 and will in turn imply an important modification
of the Aizenman-Wehr theorem. The conjecture is cur-
rently being checked in numerical simulations [29].

Consider a Hamiltonian H � H0 � gH1, where H0 and
H1 commute. A level crossing can take place at gc, where
an excited state drops below the ground state at gc. This
will correspond to a first-order transition and is possible
even in a finite system. An example is a metamagnetic
transition tuned by an external magnetic field [30]. Our
work cannot be relevant to this problem, as the thermody-
namic limit was essential for the argument given above
regarding the rounding of QPT1 by disorder into a continu-
ous phase transition. It is easy to see that in this case the
disorder will merely broaden the transition. By contrast,
the problem we considered involved noncommuting H0

and H1, and the QPT1 was driven by quantum fluctuations.
A striking but simple extension that may also find ap-

plications to numerous complex strongly correlated sys-
tems such as organics, heavy fermions, and high-Tc
superconductors is when the QPT1 in the pure problem is

between two ordered states, which from Landau theory is
generically a first-order transition. The heuristic argument
goes through straightforwardly if we are mindful that both
sides of the transition involves broken symmetries, albeit
of different types.

We thank J. Lebowitz, G. Murthy, J. Rudnick,
R. Shankar, T. Vojta, and A. P. Young for important com-
ments. This work was supported by the National Science
Foundation, Grant No. DMR-0705092. S. C. would also
like to thank the Aspen Center for Physics.

[1] A. B. Harris, J. Phys. C 7, 1671 (1974).
[2] Y. Imry and M. Wortis, Phys. Rev. B 19, 3580 (1979).
[3] K. Hui and A. N. Berker, Phys. Rev. Lett. 62, 2507 (1989).
[4] M. Aizenman and J. Wehr, Phys. Rev. Lett. 62, 2503

(1989).
[5] M. Aizenman and J. Wehr, Commun. Math. Phys. 130,

489 (1990).
[6] T. Olson and A. P. Young, Phys. Rev. B 60, 3428 (1999),

and earlier references therein; see, for example, J. J.
Jacobsen and J. Cardy, Nucl. Phys. B515, 701 (1998);
C. Chatelain and B. Berche, Phys. Rev. Lett. 80, 1670
(1998); M. Picco, Phys. Rev. Lett. 79, 2998 (1997).

[7] A. N. Berker, Physica (Amsterdam) 194A, 72 (1993).
[8] J. Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984).
[9] Y. Imry, J. Stat. Phys. 34, 849 (1984).

[10] N. F. Mott, Philos. Mag. B 44, 265 (1981).
[11] J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys.

Rev. Lett. 57, 2999 (1986).
[12] S.-k. Ma, C. Dasgupta, and C.-k. Hu, Phys. Rev. Lett. 43,

1434 (1979).
[13] C. Dasgupta and S.-k. Ma, Phys. Rev. B 22, 1305 (1980).
[14] D. S. Fisher, Phys. Rev. B 51, 6411 (1995).
[15] G. S. Grest and M. Widom, Phys. Rev. B 24, 6508 (1981).
[16] E. Fradkin, Phys. Rev. Lett. 53, 1967 (1984).
[17] R. Shankar, Phys. Rev. Lett. 55, 453 (1985).
[18] J. Cardy, J. Phys. A 29, 1897 (1996).
[19] P. Pujol, Europhys. Lett. 35, 283 (1996).
[20] M. Kohmoto, M. den Nijs, and L. P. Kadanoff, Phys. Rev.

B 24, 5229 (1981).
[21] H. A. Ceccatto, J. Phys. A 24, 2829 (1991).
[22] V. S. Dotsenko, J. Phys. A 18, L241 (1985).
[23] T. Giamarchi, Quantum Physics in One Dimension

(Oxford University Press, Oxford, 2004).
[24] T. Giamarchi and H. J. Schulz, Phys. Rev. B 37, 325

(1988).
[25] G. N. Murthy, Phys. Rev. B 36, 7166 (1987).
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