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We present the first derivation of the phase field equations using a coarse-graining procedure on a
microscopic master equation. The procedure leads to a mesoscopic nonlinear Fokker-Planck equation
equivalent to a Cahn-Hilliard equation supplemented with a noise, but with specific prescriptions for the
mobilities and the noise term. All the ingredients (chemical potentials, mobilities, stiffness coefficient)
depend on the coarse-graining size. Finally, we show the ability of the phase field equations to describe a
precipitation kinetics involving a nucleation and growth mechanism.
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An important issue in physics is to predict and control
macroscopic properties of materials. This quest inevitably
requires a multiscale approach in order to bridge the gap
between physics at the atomic scale and the mesoscopic
scale at which systems self-organize. In materials science,
where most of the engineering materials consist in a mix-
ture of several phases, a very active and promising route
toward this goal is the use of coarse-grained models in the
spirit of Landau out-of-equilibrium thermodynamics.
Seminal works along this line have been pioneered in
solid-solid phase transformations by Cahn [1] and in so-
lidification by Langer [2]. The development of these so-
called phase field methods is presently the subject of
numerous studies and their applicability has been extended
to many different domains such as plasticity [3], fracture
[4], etc. However, until now, no rigorous quantitative
method has been proposed to derive comprehensive dy-
namic equations at the mesoscale. This is precisely the aim
of this Letter, where we propose, starting from a micro-
scopic kinetic model, the first rigorous derivation of a
phase field model for precipitation.

One of the basic ingredients of a phase field model of
microstructural evolution in alloys is the introduction of
continuous fields (concentration, long-range order parame-
ters) that describe the local state of the alloy. These fields
have a meaning only at a mesoscopic scale, because their
definition requires some spatial averaging procedure. As a
consequence we can treat much larger systems than with
microscopic methods such as Monte Carlo or molecular
dynamics simulations. Another important consequence is
that the basic ingredient is a mesoscopic free energy den-
sity which incorporates the short wavelength fluctuations.
In the spirit of the Ginzburg-Landau approach, the usual
way is to use a phenomenological free energy density
whose form is dictated by general symmetry arguments.
It is easy to write this phenomenological free energy
density, for any phase transition, in the form of a poly-
nomial expansion as a function of the concentration and
long-range order parameter fields. It is also generally easy
to fix the coefficients of this expansion to reproduce a given
experimental phase diagram.

However, this approach does not give any reliable physi-
cal meaning, for example, to the metastable branches of the
free energy density. This has important consequences, in
particular, when the microstructural evolution begins by a
nucleation and growth process, because the free energy
barriers that the system should overcome through thermal
fluctuations depends on these metastable free energies. The
aim of this work is precisely to analyze the status of the
mesoscopic free energy densities that are used in phase
field theories and, simultaneously, to clarify the form that
the phase field equations should adopt.

The starting point is a microscopic master equation,

 

@P�C�
@t

�
X�
i;j

W�Cij; C�P�Cij� �
X�
i;j

W�C; Cij�P�C�; (1)

where C � �. . .pi . . .pj . . .� is an alloy configuration (pi is
the occupancy of B atoms and 1� pi that of A atoms) and
P�C� is the probability of configuration C. W�C; Cij� is the
transition rate between configurations C and Cij, where Cij

is identical to C, except that sites i and j have been
exchanged. The stars in the sums mean that we restrict
the kinetics to first neighbor exchanges. The two parts of
the right-hand side of Eq. (1) are usually referred to as the
gain and loss terms. We consider a kinetic model based on
a saddle point mechanism,

 W�C; Cij� � �0��pi���pj � 1� exp��hAi �C� � h
B
j �C��;

where hAi �C� is the interaction energy between site i and
the rest of the system if i is occupied by an A atom (and
a similar definition for hBj �C�) and where �0 �
� exp��2�Es�. � is a characteristic attempt frequency,
� � 1=kT, and Es is the energy of a particle when it sits
on the saddle point. Without lack of generality, we consider
here a simple cubic lattice and we note a the first neighbor
distance.

We now divide the system into cells of linear size d and
define mesoscopic configurations ~C � �. . . cn . . .� where cn
is the concentration of B atoms in cell n,
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where Nd � �d=a�3 is the number of sites in each cell. By
definition, the probability of the mesoscopic configuration
~C is given by

 P�~C� � TrC=~CP�C�;

where the sum runs over all the microscopic configurations
C compatible with the mesoscopic configuration ~C.

We suppose that the evolution of ~C is still a Markov
process. More precisely, we suppose that the cells are large
enough so that the boundary exchanges do not significantly
alter the cell concentration on the time scale within which
the cell thermalizes. Under this assumption, the probability
of the microscopic and mesoscopic configurations are
linked by the following equation:

 P�C� ’ P�~C�
exp���H�C��

TrC1=~C exp���H�C1��
:

Consequently, the evolution of P�~C� is given by
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~Wij�~C�P�~C� � �gain term�; (2)

where the stars in the sums mean that the first one runs over
first neighbor cells and the second one over first neighbor
sites,

 

~W ij�~C� � �0h��pi�C����pj�C� � 1�e�h
A
i �C�e�h

B
j �C�iC=~C;

and the quantity hXiC=~C is defined by

 hX�C�iC=~C �
TrC=~CX�C� exp���H�C��

TrC=~C exp���H�C��
:

~Wij�~C� is the average transition rate that governs the ex-
change between an A atom on site i and a B atom on site j,
where sites i and j are first neighbors and belong to
adjacent cells. This coarse-grained transition rate is of
course a complex function of the mesoscopic configuration
~C � f. . . cn . . . cm . . .g. We suppose that it may be factorized
as follows:

 

~W ij�~C� 	 �0 exp��gAi �~C�� exp��gBj �~C��; (3)

where the functions gAi �~C� and gBj �~C� are defined by

 gAi �~C� � kT lnh��pi�C�� exp��hAi �C��iC=~C;

gBj �~C� � kT lnh��pj�C� � 1� exp��hBj �C��iC=~C:
(4)

In fact, in the framework of statistical mechanics, these two
equations are nothing other than the expressions of the
chemical potentials (per atom) of atomic species A and B
on sites i and j, respectively. Equation (2) then becomes
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(5)

This equation is not suitable for any expansion because the
exponents, i.e., the chemical potentials gAi �~C� and gBj �~C�,
are not small. Therefore, we modify this equation and
single out the spatial derivatives of the chemical potentials.
But first we introduce the alloy chemical potential on site i,
defined by �i�~C� � gBi �~C� � g

A
i �

~C�. The introduction of
�i�~C� in Eq. (5) leads to
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 e�=2��j�~C���i�~C��P�~C� � �gain term�: (6)

This equation still involves physical quantities (chemical
potentials) defined at the atomic scale. We then define
average chemical potentials within cells as follows:

 gXn �~C� �
1

Nd

X
i2n

gXi �~C�; �n�~C� � gBn �~C� � gAn �~C�; (7)

where X � A or B. If the spatial variations of the chemical
potentials are slow enough, we may write

 gXi �~C� � g
X
j �

~C� ’ gXn �~C� � gXm�~C�;

�i�~C� ��j�~C� ’
a
d
��n�~C� ��m�~C��;

where i and j are first nearest neighbor sites belonging to
the adjacent cells n and m, respectively. With these ap-
proximations, Eq. (6) does not depend anymore on atomic
quantities:
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lmn�~Cnm�e
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�
;

(8)

where the notation ~Cnm refers to a mesoscopic configura-
tion identical to ~C, except that the concentrations in cells n
and m are equal to cn � 1=Nd and cm � 1=Nd, respec-
tively. The functions lmn�~C� are defined by

 lmn�~C� � �0e��=2��gAn �~C��gBn �~C��gAm�~C��gBm�~C��: (9)

In Eq. (8), we can identify a term which depends only on
the spatial variation of the alloy chemical potential and,
therefore, which plays the role of the driving force for the
kinetic process. The remaining terms define collectively
the mobilities. Note that, contrary to the analysis proposed
in [5,6], all the ingredients of the mesoscopic master
equation (8) are explicitly connected to the microscopic
description of the system.
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A standard procedure consists in simplifying the master
equation (8) using a well-known Fokker-Planck approxi-
mation [7] with respect to a small parameter, here identi-
fied as 1=Nd. However, the latter is still a deterministic
equation that represents the evolution of the probability
distribution P�~C�, i.e., of an ensemble of systems. In a
phase field method, we are rather interested in the evolu-
tion of a particular system. Hence we must derive the
dynamical equations that govern the kinetics of the meso-
scopic field ~C � �. . . cn . . . cm . . .�, and that are statistically
equivalent to the Fokker-Planck equation. This can be done
using the well-known equivalence between a Fokker-Plank
equation and a Langevin formulation [7]. Using the Itô
calculus for the noise terms, it gives

 

@cn
@t
�
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d2

1

kT

X�n�
m

lnm�~C���m�~C� ��n�~C��� �n�t�; (10)

where the subscript �n� means that the sum runs over the
first neighbor cells of cell n. �n�t� is a centered Gaussian
noise whose second moments are given by

 h�n�t��n�t0�i �
2

Nd

a2

d2

X�n�
p

lnp�~C���t� t0�;

h�n�t��m�t
0�i �

�2

Nd

a2

d2 lnm�
~C���t� t0�;

(11)

where n and m are adjacent cells. The Langevin equation
(10) is nothing other than a Cahn-Hilliard-type equation
supplemented with a noise term. Note however that this
equation has several important characteristics. First, the
mobilities lnm�~C� are concentration dependent. This prop-
erty has already been proposed on a more phenomenologi-
cal basis [8], and also using a single site mean field
approach without fluctuations [9]. As a result, the ampli-
tude of the correlations of the Langevin noise depends on
the local concentrations. This type of equation is referred
to as a nonlinear Langevin equation with a multiplicative
noise. Second, the alloy chemical potential, whose discrete
gradient is the kinetic driving force, depends on the size d
of the cells. More precisely, the chemical potentials gAn �~C�
and gBn �~C�, and thus the alloy chemical potential �n�~C�,
should be computed using the coarse-graining procedure
outlined in Eqs. (4) and (7).

In all generality, gAn , gBn , and �n are functions of all the
concentrations fcng. These general dependences may be
formally written as a sum of a homogeneous term that
depends only on the local concentration and an inhomoge-
neous term that depends explicitly on the spatial variations.
More specifically, we may write, to the leading order in
spatial variations,

 gXn �~C� � gXhomo�cn� �H�cn�kr̂cnk
2 � K�cn�r̂

2cn � � � � ;

where X � A or B, H and K are functions of the local
concentration, and where r̂ and r̂2 are the discrete version

of the gradient and Laplacian operators. An important
point is that, provided the cell size is large enough, the
role of these inhomogeneous contributions can be ne-
glected in the mobility term (9). Indeed, the amplitudes
of these terms decrease as the cell size increases, whereas
the homogeneous contributions converge to a finite value.
The situation is totally different for the alloy chemical
potential �n�~C� because it enters Eq. (10) through a dis-
crete gradient: The homogeneous and inhomogeneous
parts act now through their spatial variations, which are
of the same order of magnitude for any cell size. In brief, if
the cells are large enough, the inhomogeneous components
of gAn and gBn can be neglected in the mobilities, but not in
the alloy chemical potential �n.

For a numerical implementation of Eqs. (10) and (11),
we need to express the chemical potentials as explicit
functions of the mesoscopic variables cn. We first compute
the homogeneous components gAhomo�cn� and gBhomo�cn� for
a discrete set of concentrations using a Widom method [10]
implemented in a Monte Carlo simulation of the canonical
ensemble in a single cell, and interpolate the discrete data
points with an analytical form. These expressions are then
used in the mobility terms and provide also the homoge-
neous part �d

homo�c� of �n�~C�. As for the inhomogeneous
components, we use the fact that we expect �n�~C� to be
equal to the functional derivative �1=Nd��dFtot�~C�=dcn� of
a mesoscopic free energy which, to the lowest order in
spatial variations, reads

 Ftot�~C� � Nd
X
n

�
fdhomo�cn� �

1

2
�d�cn�kr̂cnk

2

�
; (12)

where, in all generality, the stiffness coefficient �d�cn�
should be made c dependent and where the subscript d
has been added to stress the fact that all the mesoscopic
quantities depend on the cell size. �d�c� controls the cor-
relations between neighboring cells, i.e., the fluctuations of
wavelength larger than the cell size d. We computed �d�c�
using Monte Carlo simulations on a large system by a
statistical analysis of the equilibrium fluctuations. More
precisely, the simulation box is subdivided into cells of size
d and we analyze the spatial fluctuations of the cell con-
centrations. If the fluctuations are small, the Fourier modes
of the fluctuations can be analytically linked to �d�c� and to
the alloy chemical potential �d

homo�c�.
As example, we present the result of the coarse-graining

procedure for a simple cubic lattice of size awith repulsive
first neighbor interactions J1 < 0. The chemical potential
�d

homo�c� obtained for the coarse-graining size d � 8a is
presented in Fig. 1. As can be seen, the equilibrium con-
centration ceq differs from the minimum of the free energy
density cmin, as it should, because this difference is related
to the asymmetric fluctuations of the concentration field
driven by the Langevin noise. Of course, as in [11,12], we
also find (not shown here) that the shape of�d

homo�c� varies
significantly with d. Then, we computed the value of �d�c�
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and we found that it varies significantly with the cell
concentration c. This c dependence is incorporated in the
phase field formalism through an analytical form. As we
consider here a situation which is symmetric with respect
to c � 0:5, �d�c� is, to the lowest order, of the form A�
Bc�1� c�. The fit of our data gives A � 0:77jJ1j and B �
�2:47jJ1j. So, at kT=jJ1j � 4, the stiffness coefficient is
about 3 times smaller in interfaces than in bulk domains.

We now present an analysis of the precipitation process
using Eqs. (10) and (11). Our aim here is to test the ability
of the phase field method to reproduce quantitatively a
precipitation process when the kinetics is driven by thermal
fluctuations. Thus, the overall concentration of the system
has been chosen inside the ‘‘nucleation and growth’’ win-
dow, i.e., between the solubility limit ceq � 0:125 and the
spinodal concentration cs � 0:218 (see Fig. 1). Therefore,
the first stage of the precipitation is driven by concentration
fluctuations that should overcome the free energy barrier of
the critical nucleus. The results obtained for the overall
compositions c � 0:16, c � 0:165, c � 0:17 are presented
in Fig. 2. As expected, the incubation time increases when
the supersaturation decreases. We mention that the numeri-
cal phase field analysis presented in Fig. 2 is more than
3 orders of magnitude less computationally demanding
than the Monte Carlo implementation of the microscopic
master equation (1). Therefore, the present phase field
approach makes it possible to study the nucleation process
for very small supersaturations, whereas it is out of reach
of a microscopic modeling. Finally, as a stringent test of
the theory, we analyze the influence of the coarse-graining
size d on the nucleation process. The precipitate volume
fraction ��t� obtained for c � 0:17 with d � 6, 8, and 10a
is presented in Fig. 2. We note that the three simulations
lead approximately to the same evolutions. Thus, even

though the metastable free energy branches, the mobilities
and the amplitude of the noise all depend strongly on the
mesoscopic coarse-graining size d, the overall procedure
leads to a macroscopic behavior independent of d. It means
that the method proposed above to derive the phase field
equations relies on sound foundations.

This work has been motivated by the participation of one
of the authors (A. F.) in the research program
‘‘Precipitation’’ conducted by Alcan, Arcelor, CEA, and
CNRS.
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FIG. 2 (color online). Volume fraction of the precipitates as a
function of time for kT=jJ1j � 4 on a lattice of dimensions
64d
 64d
 64d. The phase field simulations have been done
for three different compositions c � 0:16, c � 0:165, and c �
0:17 with a coarse-graining size d � 8a. For the composition
c � 0:17, the results obtained with d � 6, 8, and 10a are
compared.
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FIG. 1 (color online). Coarse-grained chemical potential
�d

homo�c� measured using Monte Carlo simulations (circles)
and corresponding free energy fdhomo�c�. Specific concentrations
are indicated: the minimum of the homogeneous free energy
cmin � 0:11, the solubility limit ceq � 0:125, and the spinodal
cs � 0:218.
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