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Absolute Instability of a Liquid Jet in a Coflowing Stream
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Cylindrical liquid jets are inherently unstable and eventually break into drops due to the Rayleigh-
Plateau instability, characterized by the growth of disturbances that are either convective or absolute in
nature. Convective instabilities grow in amplitude as they are swept along by the flow, while absolute
instabilities are disturbances that grow at a fixed spatial location. Liquid jets are nearly always
convectively unstable. Here we show that two-phase jets can breakup due to an absolute instability
that depends on the capillary number of the outer liquid, provided the Weber number of the inner liquid is
>0(1). We verify our experimental observations with a linear stability analysis.
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A thin stream of a Newtonian fluid is always unstable to
breakup into drops, due to the surface-tension-driven
Rayleigh-Plateau instability [1,2]. If the fluid is forced
through an orifice, drop formation can occur either right
at the exit or further downstream, at the end of a jet of fluid.
These represent two regimes of the instability, dripping and
jetting [3,4]. They are familiar to anyone who has watched
water drip or flow from a faucet. Dripping is a common
example of an absolute instability [5—9]; the perturbations
that lead to drop pinch-off grow at a fixed location in space
and at a frequency that is intrinsic to the system, making it
insensitive to external noise [10]. As a result, monodis-
perse drops are almost always produced through a drip-
ping instability [5—7]. By contrast, jetting is virtually al-
ways the result of a convective instability [11,12]; the
perturbations that lead to jet breakup amplify random noise
as they are advected along the interface of the jet, inevita-
bly leading to less uniform drops. One means of generating
highly uniform drops in the jetting regime would be to
establish an absolute instability. This would be of signifi-
cant scientific interest, and also of great value for technol-
ogies that require highly uniform drop formation, such as
microfluidics [13,14], emulsification [15,16], and encapsu-
lation [15]. However, absolute instabilities in the jetting
regime have only been observed in the rarified environ-
ment of microgravity [17,18]. Despite their great techno-
logical potential and scientific interest, they have never
been observed in liquid jets surrounded by a second vis-
cous liquid.

In this Letter we report the observation of jets in a
coflowing stream that break up into drops due to an abso-
lute instability. We use a microcapillary device and identify
characteristics of the jet shape and breakup that indicate an
absolute instability. We further show that by increasing the
shear stress on these jets above a critical value, the insta-
bility transitions from absolute to convective. We confirm
the interpretation of our experimental results using a linear
stability analysis.
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We generate the jets in coflowing liquids using a
capillary-based microfluidic device consisting of two co-
axially aligned cylindrical capillaries housed within a
larger square tube. We achieve good alignment of the
cylindrical capillaries within the square tube by matching
their outer diameters to the inner dimension of the square
tube. We taper the tip of one of the inner capillaries to a
diameter of dg, ~30 um and insert it into the second
untapered capillary, which has an inner diameter of D =
600 pm and a length of ~5 cm; a schematic of the tapered
tip is shown in the inset of Fig. 1(a). The outer liquid is
poly(dimethylsiloxane) (PDMS) oil with a viscosity,
Nou = 10 mPa- s, while the inner liquid is deionized water
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FIG. 1 (color online). (a) High-speed image of a typical jet.
The small neck between the jet and the bulb has a diameter,
dyeck- The outer diameter of the tip is ~40 um, while dy, =
30 um and the inner diameter of the surrounding cylindrical
capillary is ~600 wm. Here "W, = 5.5. (Inset) Device sche-
matic (not to scale). (b) Neck diameter as a function of time. The
line is an exponential fit to the envelope. The frequency of drop
formation is ~40 Hz and the frequency of oscillation
~2000 Hz. The flow rates of the outer and inner fluids are 9 X
10* uL/hr and 6 X 10® uL/hr, respectively.

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.100.014502

PRL 100, 014502 (2008)

PHYSICAL REVIEW LETTERS

week ending
11 JANUARY 2008

with 7;, = 1 mPa -s. The surface tension between the
fluids is v = 40 mN/m, as measured by the pendant-
drop method [19]. We drive each fluid with a syringe
pump and image the jet with a high-speed camera. We
note that gravitational forces are not relevant in our experi-
ments as all characteristic length scales are well below the
capillary length.

One common way of forming a jet in a coflow is to
increase the outer flow rate, which increases the capillary
number of the outer fluid, Coy, = Noutou/ V> Where uqy, is
the mean velocity of the outer fluid. This number defines
the balance of viscous shear forces to surface tension
forces. Instead, we generate jets by injecting the inner fluid
at a velocity large enough that inertial forces overcome
surface tension forces at the exit of the tip [20]. This
balance of forces is defined by the inner Weber number,
W, = meuizn /v, where p;, is the density of water, L is a
characteristic length scale equal to the diameter of the jet,
and u;, is the mean velocity of the inner fluid. At the exit of
the capillary tip L = dg, and we calculate u;, as the
volume flow rate of the inner fluid divided by the cross-
sectional area of the jet. In coflowing streams, jetting
occurs when W, = O(1) at the exit of the capillary
[20]. In our experiments, the inner Reynolds number,
Rin = pinLttin/ Min 18 ~0(50), while the outer Reynolds
number, Roy = pouDtou/ Mous 18 ~O(1), where poy =
960 kg/m? is the density of PDMS oil. Although jetting of
a liquid in air also occurs at similar ‘W, [3,4], the shape of
the jets is dramatically different from those generated by
the coflow. A water jet falling from a faucet under gravity
becomes thinner along its length. By contrast, here we
observe jets whose diameter increases along their length;
this is a result of the viscous liquid surrounding the jet, as
shown in Fig. 1(a). Further downstream, these jets develop
aremarkable standing-wave-like oscillation that modulates
the diameter; these oscillations are similar in appearance to
capillary waves that form on jets due to gradients in surface
tension [21]. However, the spatial undulations that we
observe, although initially static, eventually begin pulsing
radially and this ultimately leads to drop pinch-off; we
provide a movie of the jet breakup in the supplemental
information [22]. The resultant pulsing is most clearly seen
in the neck of fluid that connects the jet to the growing bulb
at its end; the neck diameter, d,., oscillates about its
mean with an exponentially increasing amplitude until
pinch-off occurs and the drop detaches, as shown in
Fig. 1(b). Immediately following drop pinch-off, surface
tension causes the end of the jet to retract, whereupon the
next bulb begins to grow and the process repeats itself.
Remarkably, throughout this entire process the spatial
oscillations on the jet remain essentially stationary with
respect to the flow of the inner fluid. We quantify this flow
by measuring the mean velocity using tracer particles
distributed homogenously throughout the jet. The velocity
within the jet can be as much as 100 times larger than the
downstream velocity of the neck, as shown in Fig. 2(a).

The spatial oscillations on the jet and the fluid neck itself
travel only a short distance downstream with a velocity
comparable to u,, during the drop pinch-off process. At
sufficiently large u, the velocity of the neck and that of
the particles become comparable [Fig. 2(a)].

The temporal pulsing and the nearly spatially stationary
oscillations of the diameter are highly unusual behavior for
jet breakup at moderate Reynolds numbers. More typically,
when a thread of one fluid breaks within a second, the
minimum thread diameter decreases to zero at pinch-off
without oscillations of any sort [23,24], although oscilla-
tions have been observed in a numerical simulation [25].
To understand the temporal oscillations of the jet, which
remain nearly stationary in space, we turn to linear stability
theory: we decompose the perturbations on the jet into
Fourier modes, assumed to be axisymmetric. Any parame-
ter associated with the flow, such as the velocity or pres-
sure, is defined to be proportional to ¢/*2~“?) where z is the
axial coordinate and ¢ is time. In general, the frequency,
®w = w, + iw;, and wave number, k = k, + ik;, of the
perturbations are complex and are related through a dis-
persion relation of the form D(w, k) = 0 [10]. The super-
position of the different modes generates wave packets that
travel both up and downstream along the interface of the
Jet, with group velocity, vg,,,- Typically, a temporal stabil-
ity analysis is used to determine whether or not a system is
stable by examining the behavior of the perturbations over
time. In this analysis, the wave number is assumed to be
real, k = k,, to separate temporal from spatial instability. If
the growth rate of the instability is w; < 0, then the per-
turbations decay in time and the system is stable and jet
breakup will not occur; by contrast, if w; > 0, the pertur-
bations grow exponentially, making the system unstable
and drop pinch-off can occur. In this case, this analysis is
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FIG. 2 (color online). (a) Downstream velocities of the neck
(filled circles), u,.q, and 6 wm tracer particles (open circles),
Upariicle» dispersed in the inner fluid as a function of the velocity
of the outer fluid. The dashed line is the mean velocity of the
inner fluid at the exit of the capillary tip. (inset) Image of a jet
containing dispersed particles. (b) The profile of the jet shown in
Fig. 1(a) (open squares) and the “W,, (line) as a function of the
axial position along the jet.
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followed by a spatiotemporal analysis that distinguishes
convective from absolute instabilities. This distinction is
made based on the Briggs-Bers criterion, which requires
finding spec1ﬁc w, and k, that satisfy D(w, ko) = 0 and

Vgroup = dk w=wok=k, — 0, at a specific spatial location in
the laboratory frame of reference [10]; physically, this
condition can be qualitatively interpreted to occur when
the upstream velocity of the wave packet coincides with
the downstream velocity of the interface. If the imaginary
part of w is negative, the instability is convective since the
perturbations decay with time at the specified location. By
contrast, if the imaginary part of w is positive, the insta-
bility is absolute since the perturbations grow exponen-
tially with time at the specified location.

In our experiments, the amplitude of the oscillations at
the neck that lead to drop pinch-off grow exponentially in
time [Fig. 1(b)], implying that the growth rate of the
instability is positive. In addition, the large difference in
velocity between the neck and u;, [Fig. 2(a)] coupled with
the spatially stationary oscillations throughout the entire
pinch-off process suggests that the superposition of the
perturbations produces the condition of vy, =0 at a
fixed spatial location. Further insight into the breakup of
these jets can be gained by examining the decrease of W,,
along the axis of the jet. Although, we generate these jets
by injecting the inner fluid at ' W;, > O(1), drop pinch-off
from the end of the jet occurs only after the jet diameter has
widened sufficiently such that ‘W, decreases to ~1; this
decrease is shown by the line superimposed on the jet
profile in Fig. 2(b). Since dripping occurs only when
W, = 0(1) [3,4] we hypothesize that the drop pinch-
off mechanism from the widening jets is analogous to the
dripping regime, at the end of the jet. These characteristics
strongly suggest that the widening jets breakup due to an
absolute instability [6,8,9].

As a further test of our interpretation, we increase the
shear stress on the jet to upset the balance between the
interface velocity and the upstream velocity of the wave
packet; this corresponds to a transition from an absolute to
a convective jet instability. Since the interface velocity is
controlled mainly by the outer fluid, the relevant metric for
this transition is C,,. In these experiments, we achieve a
factor of 10 increase in C,, by increasing 7., from 10 to
100 mPa - s. We start by generating a jet at W, = 3.1
with C, < 1, and gradually raise C,, by increasing u,;
an image of this jet before we increase u,, is shown in
Fig. 3(a). In this particular case the jet breakup process
leads to drops of two different sizes; following the detach-
ment of the larger drop, a second smaller drop detaches
from the neck as it retracts, as has been observed in other
systems [26-28]. Increasing C,,, by nearly a decade pro-
duces no significant change in the jet length, L;.; however,
at a critical Cj;,, = 0.65 we observe an abrupt and dramatic
increase in Lj,, as shown in Fig. 3(b) and 3(c). The
corresponding measurements of jet length are shown as
filled squares in Fig. 3(d); we label the points referring to
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FIG. 3 (color online). Jet length as a function of C,,,. (a) Image
of the jet generated at W, = 3.1 and C,,, = 0.07. (b) Transient
image of the jet generated at C,,, = 0.69. The oscillations on the
jet gradually die out as the length increases at the critical value,
Ciu- () Image of the jet at C,, = 0.69 after the lengthening.
(d) Plot of the jet length as a function of C,,. The filled squares
are the measured jet lengths. The data points corresponding to
(a)—(c) are labeled. The open circles and triangles are dripping,
where L;,; = 0. The “W,, for the circles and triangles is 0.19 and
0.05, respectively. The arrow marks Cj,; obtained from the linear
stability analysis. Inset: Linear stability analysis. Below Cj, the
jet breaks due to an absolute instability, while above, it breaks
due to a convective instability. For these experiments 1;,/ Mo =
0.01.

the images in Fig. 3(a)—3(c) with the appropriate letter.
Remarkably, this large increase of L;, also coincides with
the suppression of the spatial oscillations as the jet evolves
in time [Fig. 3(b) and 3(c)].

We can quantitatively describe this transition using our
linear stability analysis. We first calculate the downstream
evolution of the velocity profiles of both fluids [29,30]. The
velocity profile of the inner liquid is parabolic as it emerges
from the tip and gradually flattens downstream due to the
widening of the jet, while the velocity profile of the outer
liquid is nearly parabolic although a thin boundary layer
develops near the jet [31]. We then perform a spatial
stability analysis under these flow conditions by determin-
ing the sign of the imaginary part of w, at several axial
positions along the jet [10,30]. We find that below a
calculated value of Cj, = 0.69, the jets are absolutely
unstable within a section of the jet that is much larger
than the characteristic wavelength of the absolute mode,
Ag = 2/ ky; since this section is much larger than A, this
mode can grow, resulting in jet breakup due to an absolute
instability. Above C},, however, the absolutely unstable
section is located immediately adjacent to the tip and is
greatly reduced in spatial extent. In this case, since the
absolutely unstable section is very small compared to A,
the absolute mode can no longer grow, resulting in jet
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break up due to a convective instability. Furthermore, this
calculated value of Cj, is in remarkably good agreement
with our experimental observations.

Our linear stability analysis further predicts that the
value of C;, does not change significantly as a function
of "W,, [inset of Fig. 3(d)]; this implies that the shear from
the outer liquid determines the transition from an absolute
to convective instability irrespective of the inertia of the
inner liquid. This prediction is consistent with our data,
which show that nearly the same C};, that causes the abrupt
jet lengthening when W,, = 3.1 also induces a similar
transition when W, < 1, as shown by the open symbols
in Fig. 3(d). This is remarkable because when W,, < 1
and C,, < Cj, the system is in a dripping regime; above
Ci.» however, the system transitions from an absolutely-
unstable dripping regime [5—9] to a convectively unstable
jetting regime. This emphasizes the analogies between the
dripping and the widening-jet regimes, adding further sup-
port to our hypothesis that the increase in Lj [Figs. 3(a)—
3(c)] corresponds to a transition from an absolute to a
convective instability.

Absolute instabilities are not widely observed in jet
breakup due to the fine balance of forces required to
generate them. The balance is difficult to achieve under
gravitational acceleration, although it is possible in micro-
gravity [17,18]. However, as we show here, in two-phase
coflows, increasing "W, above ~1 to induce the formation
of a widening jet [20] can also produce the appropriate
conditions for an absolute instability to form. Although we
discuss the transition of the instability from absolute to
convective in terms of the two control parameters C,, and
“W,,, there are two additional dimensionless parameters
that we must consider to fully describe our system; these
can be chosen as iy / Mout> and the inner Ohnesorge num-

ber, O,, = —to

Pindiip¥’
properties of the system and the experimental geometry.
Altering these two parameters would most likely not affect
the physical mechanism by which shear causes the tran-
sition from an absolute to convective instability but would
likely only change the value of Cj . Nevertheless, through
further exploration over the range of these four nondimen-
sional numbers we can achieve an even greater understand-
ing over the conditions leading to the development of ab-
solute instabilities in two-phase systems. This could enable
the tuning of the nature of the instability to offer another
route to generate uniform emulsions from jet breakup.
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