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We show how, in principle, to construct analogs of quantum Hall edge states in ‘‘photonic crystals’’
made with nonreciprocal (Faraday-effect) media. These form ‘‘one-way waveguides’’ that allow electro-
magnetic energy to flow in one direction only.
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In this Letter, we describe a novel effect involving an
interface between two magneto-optic photonic crystals
(periodic ‘‘metamaterials’’ that transmit electromagnetic
waves) which can theoretically act as a ‘‘one-way wave-
guide’’, i.e., a channel along which electromagnetic energy
can propagate in only a single direction, with no possibility
of being backscattered at bends or imperfections. The
unidirectional photonic modes confined to such interfaces
are the direct analogs of the ‘‘chiral edge states’’ of elec-
trons in the quantum Hall effect (QHE) [1,2]. The key
enabling ingredient is the presence of ‘‘nonreciprocal’’
(Faraday-effect) media that breaks time-reversal symmetry
in the metamaterial.

Just as in the electronic case, every two-dimensional
photonic band is characterized by a topological invariant
known as the Chern number [3], an integer that vanishes
identically unless time-reversal symmetry is broken. If the
material contains a photonic band gap (PBG), the Chern
number, summed over all bands below the gap, plays a role
similar to that of the same quantity summed over all
occupied bands in the electronic case. In particular, if the
total Chern number changes across an interface separating
two PBG media, there necessarily will occur states local-
ized to the interface having a nonzero net current along the
interface [1,2]. In the photonic case, such states would
comprise our ‘‘one-way waveguide’’.

Such an interface between two PBG media can be
realized as a domain wall in a 2D periodic photonic meta-
material, across which the direction of the Faraday axis
reverses. Unidirectional edge states are guaranteed in this
system provided that the Faraday effect generates photonic
bands with nonzero Chern numbers. Here, we construct
photonic bands with nonzero Chern invariants in a hexago-
nal array of dielctric rods with a Faraday effect. We then
show that as a consequence of topology of the single-
particle photon bands in the Brillouin zone, the edge states
of light occur along domain walls (where the Faraday
effect vanishes).

It may seem surprising that the physics of the QHE can
have analogs in photonic systems. The QHE is exhibited by
incompressible quantum fluid states of electrons—con-
served strongly interacting charged fermions—in high

magnetic fields, while photons are nonconserved neutral
bosons which do not interact in linear media; furthermore,
photonic bands can be described classically, in terms of
Maxwell’s equations. However, the integer QHE can, in
principle, occur without any uniform magnetic flux density
(just with broken time-reversal symmetry) as has explicitly
shown by one of us in a graphenelike model of noninter-
acting Bloch electrons [4]; thus Landau-level quantization
is not an essential requirement for the quantum Hall effect.

We have transcribed the key features of the electronic
model of Ref. [4] to the photonic context. The edge states
are a property of a one-particle eigenstate problem similar
to the Maxwell normal-mode problem, so they are repli-
cated in the photonics problem. (The QHE itself has no
photonic analog, as it follows from the Pauli principle of
filling all one-particle states below the Fermi level.)

The Maxwell normal-mode problem in loss-free linear
media with spatially periodic local frequency-dependent
constitutive relations is a generalized self-consistent
Hermitian eigenproblem, somewhat different from the
standard Hermitian eigenproblem. The nonreciprocal parts
of the local Hermitian permittivity and permeability ten-
sors ��r; !� and ��r; !� are odd imaginary functions of
frequency, so frequency dependence is unavoidable. The
generalized eigenproblem has the structure

 U y�k�AU�k�jun�k�i � !n�k�B�!n�k��jun�k�i; (1)

where U�k� is a unitary operator that defines the Bloch
vector k; A and B�!� are Hermitian operators, with the
real-eigenvalue stability condition that the Hermitian op-
erator B0�!� � �@=@!��!B�!�� is positive definite [this
assumes that the periodic medium coupled to the electro-
magnetic fields has a linear response described by
harmonic-oscillator modes, none of which have natural
frequency !n�k�—a detailed derivation has been pre-
sented in Ref. [5] ]. The eigenfunctions hrjun�k�i are the
spatially periodic factors of the Bloch states. The elec-
tronic band-structure problem is a simplification of
Eq. (1), with A replaced by the one-electron Hamilton-
ian, B by the identity operator 1, and !n by the energy
eigenvalue.
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In this formulation of Maxwell’s equations, the eigen-
function un�k; r� � hrjun�k�i is the 6-component vector of
complex electromagnetic fields

 u n�k; r� �
En�k; r�
Hn�k; r�

� �
: (2)

In this basis, U�k; r� � expik � r and A � �iJara (with
ra � @=@ra, and repeated indices summed), where

 J a �
0 iLa

�iLa 0

� �
; B �

��r; !� 0
0 ��r; !�

� �
;

(3)

here La are the 3	 3 spin-1 matrices, �Lb�ac � i�abc. If
the physical electromagnetic fields are given by the real
parts of un�k; r� expi�k � r�!n�k�t�, the spatially periodic
time-averaged energy density and energy current are the
quadratic forms [u
n, B0�!n�un], (u
n, Jaun). For our pur-
poses, the key photonic band-structure quantity is the
Berry connection Aa

n�k�, a real function of k given by

 A a
n �
hunjB0�!n�jr

a
kuni � hr

a
kunjB0�!n�juni

2ihunjB0�!n�juni
; (4)

where rak � @=@ka is the k-space derivative. We obtained
(4) as a generalization of the B � 1 expression [3] by
deriving (1) from a standard Hermitian eigenproblem
where electromagnetic fields are explicitly coupled to
harmonic-oscillator degrees of freedom of the medium [5].

The solution of the normal-mode eigenproblem only
determines un�k; r� up to an arbitrary k-dependent phase
factor; if the replacement un�k; r� ! un�k; r� expi�n�k� is
made, Aa

n�k� !Aa
n�k� � r

a
k�n�k�. The Berry connec-

tion is a ‘‘gauge-dependent’’ analog of the electromagnetic
vector potential; the associated gauge-invariant function
(analogous to the magnetic flux density) is the k-space
Berry curvature F ab

n �k� � r
a
kA

b
n �r

b
kA

a
n. The Berry

phase expi�n��� � expi
H
Aa

ndka associated [6] with
adiabatic evolution around a closed path � (here in k space)
is the gauge-invariant analog of the Bohm-Aharonov phase
factor and can be expressed in terms of the integral of F ab

n
over a surface bounded by � [3].

The Berry curvature satisfies a k-space analog of the
Gauss law, except that ‘‘monopole’’ singularities emitting
total ‘‘Berry flux’’ �2� can occur at k-space points where
there are ‘‘accidental degeneracies’’ between bands (this
quantization of the monopole charge ensures that the ex-
pression for the Berry phase in terms of Berry curvature on
a surface bounded by � is independent of how that surface
is chosen [3] ). The integer Chern invariant associated with
any compact surface (2-manifold) � in k space is

 C�1�n ��� �
1

2�

ZZ
�
dka ^ dkbF

ab
n : (5)

In the case of a 2D band structure, � may be taken to be the
2D Brillouin zone (BZ) itself, and C�1�n is a property of the

2D band [7]. If time-reversal symmetry is unbroken,
F ab

n ��k� � �F
ab
n �k�, and Chern numbers vanish.

We now wish to construct a 2D photonic band structure
where some bands have a nonzero Chern number. The key
idea is to start with a band structure that has both time-
reversal symmetry and inversion symmetry, which allows
the existence of pairs of ‘‘Dirac points’’ in the 2D BZ.
These are isolated points where two bands become degen-
erate, but split apart with a linear dispersion (resembling
that of the massless Dirac equation) for nearby Bloch
vectors. Dirac points are generically allowed because if
inversion symmetry is present, F ab

n ��k� � F ab
n �k�; in

combination with time-reversal symmetry, this means
that F ab

n �k� � 0. It is then possible to choose a phase
convention such that the eigenfunctions un�k; r� of (1)
are real for all k. The eigenproblem is then of the real-
symmetric type, where it is possible to find an ‘‘acciden-
tal’’ degeneracy between two bands by varying just two
parameters (in this case, the 2D Bloch vector k); in con-
trast, in the general complex-Hermitian case, three pa-
rameters must be varied to find a degeneracy, which
cannot be done by merely ‘‘fine-tuning’’ a 2D k.

Dirac points can exist in a 2D band structure with both
spatial-inversion and time-reversal symmetry, but a gap
opens if either symmetry is broken. While breaking of
inversion symmetry leads to nonzero Berry curvature
(and hence corrections to the ‘‘semiclassical’’ equations
for the trajectories of light rays in adiabatically varying
media [8] ), it does not lead to nontrivial topology of the
bands. In contrast, when a gap opens at Dirac points due to
time-reversal breaking, the two bands that split apart in-
evitably acquire nonzero Chern numbers.

We can now give an in-principle demonstration that
‘‘one-way waveguides’’ can be constructed using nonreci-
procal photonic crystals. Consider a system with a uniform
isotropic permeability tensor �0�ab, and an isotropic but
spatially varying permittivity tensor ��r��0�ab, with

 ��r� � ��1� �VG�r��; VG�r� � 2
X3

n�1

cos�Gn � r�;

(6)

where Gn, n � 1, 2, 3 are three equal-length reciprocal
vectors in the xy plane, rotated 120
 relative to each other.
For small �, this problem can be solved analytically in a
‘‘nearly-free-photon’’ approximation. This system has
continuous translational invariance in the z direction, and
we will restrict attention to wave numbers kz � 0, with
Bloch vector k in the xy plane. The electromagnetic fields
then separate into decoupled ‘‘TE’’ and ‘‘TM’’ sets,
fEx; Ey; Hzg and fHx;Hy; Ezg; we specialize to the TE set.
The six corners of the (first) BZ are at �Kn, where K1 �
�G2 �G3�=3, etc., and jKj � jGj=

p
3; since K2 �K1 �

G3, the three wave vectors Ki are equivalent as Bloch
vectors. To leading order in � and the deviation �k � k�
Ki of the 2D Bloch vector from the BZ corner, the three
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‘‘free photon’’ TE plane waves with speed c0 split into a
‘‘Dirac-point’’ doublet with ! � !D � vDj�kj �
O�j�kj2�, where !D � c0jKj�1� �=4�O���2�, vD �
c0=2�O���, and a singlet ! � !0 �O�j�kj2�, !0 �
c0jKj�1� �=2�O��2��.

We now perturb the Dirac points by a Faraday term
(which explicitly breaks time-reversal symmetry), with
an axis normal to the xy plane, added to the permittivity
tensor: �xy � ��yx � i�0���r; !�, where

 ��r; !� � �0�!� � �1�!�VG�r�; (7)

�0�!�, �1�!� are real odd functions of !. We assume that,
for! � !D, j�0�!�j, j�1�!�j � j�j � 1, with negligible
frequency dependence. The Dirac points now split, with
dispersion ! � !D � vD�j�kj2 � 	2�1=2, where, to lead-
ing order in �, 	 � jKj�32�1�!D� � 3��0�!D��.

For small 	, the Berry curvatures of the upper and lower
kz � 0 bands near the split Dirac points are

 Fxy� ��k� � �
1
2	�j�kj

2 � 	2��3=2: (8)

There is a total integrated Berry curvature of�� near each
Dirac point, giving total Chern numbers �1 for the split
bands. By inversion symmetry, the Berry curvatures at the
two Dirac points have the same sign; if the gap was opened
by broken inversion symmetry, with unbroken time-
reversal invariance, they would have opposite sign, and
the Chern number would vanish.

We now consider an adiabatically spatially varying
Faraday term parametrized by a 	�r� that is positive in
some regions and negative in other regions. The splitting of
the Dirac points vanishes locally on the line where 	�r� �
0. It is necessary that, in the perfectly periodic structure
with 	 � 0, there are no photonic modes at other Bloch
vectors that are degenerate with the modes at the Dirac
points.

Such frequency isolation of the Dirac points cannot
occur in the weak-coupling ‘‘nearly-free photon’’ limit,
but can be achieved, at least for kz � 0 modes, in hexago-
nal arrays of infinitely long dielectric rods parallel to the z
axis. An example can be seen in Fig. 1(a) of Ref. [9]. That
figure was exhibited to demonstrate a frequency gap be-
tween the first and second TE bands, but incidentally also
shows that the second and third TE bands are separated by
a substantial gap except in the vicinity of the BZ corners,
where they touch at Dirac points. The corresponding TM
bands were not given in Ref. [9], but we found that the
Dirac-point frequency !D is also inside a large gap of the
TM spectrum (see Fig. 1). When a Faraday term is added,
the bands forming the Dirac point in Fig. 1 split apart, and
each now nondegenerate band will have associated with it a
nonzero Chern number (see Ref. [5] ).

The Faraday effect incorporated to the hexagonal array
of rods explicitly breaks time-reversal symmetry on the
scale of the unit cell of the metamaterial: the permittivity
tensor acquires an imaginary off-diagonal component hav-

ing the periodicity of the unit cell, as described above. A
hexagonal array consisting of a material having a large
Verdet coefficient, such as a rare-earth garnet with ferro-
magnetically ordered domains, would give rise to such an
effect.

While these kz � 0 Dirac-point modes are not degener-
ate with any other kz � 0 modes, they are degenerate with
kz � 0 modes. To fully achieve a ‘‘one-way’’ edge-mode
structure, the light must also be confined in the z direction,
with Dirac points at a frequency that is nondegenerate with
any other modes. To design such structures, it will be
necessary to vary the filling factor of the rods along the z
direction so that light remains confined to regions of rela-
tively larger filling factors. The technical challenge would
be to vary the filling factors without introducing any modes
into the bulk TE gaps surrounding the Dirac points.

Let ju
��kD�i, 
 � � be the degenerate solutions of
Eq. (1) at a pair of isolated Dirac points, normalized so
hu
��kD�jB0�!D�ju
0 ��kD�i � B0�

0 . Now add a
Faraday perturbation �B�r; !�: in degenerate perturbation
theory, normal modes with small �! � !�!D have the
form

P

;� 

�

 �r�U��kD; r�u
��kD; r�. For slow spatial

variation, there is negligible mixing between modes at
different Dirac points, and  �
 �r� is the solution of

 

X

0
�� iJa?ra �!D�B�r���

0 

�

0 �r� � �!B0 �
 �r�; (9)

where Ja? and �B�r� are 2	 2 matrices given by
 

�Ja?�
�


0 � hu
��kD�jJ

aju
0 ��kD�i;

a � x; y; ��B�r��

� hu
��kD�j�B�r; !D�ju
0 ��kD�i:

(10)

FIG. 1. Photon bands for kz � 0 electromagnetic waves prop-
agating normal to the axis of a hexagonal 2D array of cylindrical
dielectric rods; a is the lattice constant. As in Fig. 1(a) of
Ref. [9], the rods fill a fraction f � 0:431 of the volume, with
dielectric constant � � 14, and they are embedded in an � � 1
background. The lowest five 2D bands are well separated from
higher bands, except near a pair of ‘‘Dirac points’’ at the two
distinct Brillouin zone corners (J).
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For a straight line interface, this equation has the form
vDK̂j i � �!j i, with vD > 0, and

 K̂ � �i�xrx � �kk�y � 	�x��z; (11)

where �a are Pauli matrices. Here kDy � �kk is the con-
served Bloch vector parallel to the interface; we take 	�x�
to be monotonic, with 	�x� ! �	1 as x! �1.

It is instructive to first consider the exactly-solvable case
	�x� � 	1 tanh�x=��, � > 0, where K̂2 is essentially the
integrable Pöschl-Teller Hamiltonian [10]. The spectrum
of modes bound to the interface is
 

!0��kk� � !D � s	vD�kk; s	 � sgn �	1�; (12a)

!n���kk� � !D � vD��k2
k
� 	2

n�
1=2; n > 0; (12b)

with j	nj< j	1j; for the integrable model, 	2
n is given

by 2nj	1j=�, n < j	1j�=2. There is always a unidirec-
tional n � 0 mode with speed vD and a direction deter-
mined by the sign of 	1; in the small-� (or sharp-wall)
limit j	1j� < 2, this is the only interface mode.

Let ��	2� be the dimensionless area in the x� kx phase
plane enclosed by a closed constant-frequency orbit
�kx�

2 � �	�x��2 � 	2 < j	1j2, corresponding to a bound
state. For the integrable model, this has the simple form
��	2� � �	2�=j	1j; the n > 0 bidirectional modes thus
satisfy a constructive-interference condition

 ��	2
n� � 2�n: (13)

This contrasts with the usual semiclassical condition � �
2��n� 1

2�; the change is needed for the n � 0 ‘‘zero
mode’’ (12a) to exist, and it can be interpreted as deriving
from an extra Berry phase factor of �1 because the orbit
encloses a Dirac degeneracy point at �x; kx� � �0; 0�. For
general 	�x�, the n � 0 eigenfunction is

  0

�r� / ’
�s	� exp

�
i�kky� s	

Z x
	�x0�dx0

�
; (14)

�y’�s� � s’�s�. For slowly varying 	�x�, the condition
(13) will determine 	2

n for any n > 0 interface modes.
Since there are two Dirac points, there are two such

unidirectional edge modes at a boundary across which the
Faraday axis reverses. The crucial feature is that both
modes propagate in the same direction and cannot disap-
pear, even if the interface becomes sharp, bent, or disor-
dered. As in the QHE, the difference between the number
of modes moving in the two directions along the interface
is topologically determined by the difference of the total
Chern number of bands at frequencies below the bulk
photonic band gap in the regions on either side of the
interface; in this case j�C�1�j � 2.

For j�!j< vDj	1j a Faraday interface has no counter-
propagating modes into which elastic backscattering can
take place, so the ‘‘one-way waveguide’’ that it forms is

immune to localization effects, just like electronic trans-
port in the QHE. In the QHE, the number of electrons is
strictly conserved; in photonics, the photons only propa-
gate ballistically if absorption and nonlinear effects are
absent. These effects do allow degradation of the electro-
magnetic energy current flowing along the interface, so the
analogy with the QHE is not perfect.

Even if a 2D metamaterial with isolated Dirac points can
be designed, the problem of finding a suitable magneto-
optic material to provide the Faraday effect must be ad-
dressed. The effect must be large enough to induce a gap
that overcomes the effect of any inversion-symmetry
breaking. The parameter j	1j is the inverse length that
controls the width of the unidirectionally propagating
channel (and the unidirectional frequency range); in order
to keep the wave confined to the interface and prevent
leakage, the Faraday coupling must be strong enough so
that this width is significantly smaller than the physical
dimensions of the sample of metamaterial.

In summary, we have shown that analogs of quantum
Hall effect edge modes can, in principle, occur in two-
dimensional photonic crystals with broken time-reversal
symmetry. The electromagnetic energy in these modes
travel in a single direction. Explicit theoretical examples
of such modes have been constructed in Ref. [5]. Such
quasilossless unidirectional channels are a novel possibil-
ity that might one day be physically realized in ‘‘photonic
metamaterials’’ with nonreciprocal constituents.
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