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We report that a full three-dimensional (3D) photonic band gap (PBG) is formed in a photonic
amorphous structure in spite of complete lack of lattice periodicity. It is numerically shown that the
structure ‘‘photonic amorphous diamond’’ possesses a sizable 3D PBG (18% of the center frequency for
Si-air dielectric contrast) and that it can confine light at a defect as strongly as conventional photonic
crystals can. These findings present important new insight into the origin of 3D PBG formation and open
new possibilities in developing 3D PBG materials.
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In 1987, Yablonovitch [1] and John [2] proposed the idea
that a three-dimensional (3D) photonic band gap (PBG), in
which electromagnetic wave propagation is forbidden in
all directions, can be realized in artificial 3D periodic
dielectric structures. Since then, those ‘‘photonic crystals’’
have attracted much attention and have been studied ex-
tensively because of their wide potential applications in
optics. In general, PBG in photonic crystals is compared to
electronic band gap in semiconductors. In many cases, the
formation of PBG is explained by the Bragg scattering of
photons by a periodic lattice; multiple interference ef-
fects by Bragg scattering create an energy gap along the
Brillouin zone boundary. This explanation naturally re-
quires the existence of the periodic lattice for the formation
of PBG, and therefore it has been widely believed that the
lattice periodicity is indispensable for the PBG formation.
However, there is another explanation of the formation of
band gaps, based on a viewpoint of a tight-binding model,
which is frequently used in the case of electronic band gaps
in semiconductors. Two electrons bound to each of the two
closely located atoms can couple to form bonding and
antibonding states. In solids, they form, respectively, bond-
ing and antibonding bands, leaving an energy gap be-
tween them. This explanation does not require the lattice
periodicity nor long-range order. In fact, many amorphous
semiconductors, such as a-Si and a-Ge, are known to form
large electronic band gaps as well as their crystalline
counterparts.

The extension of the tight-binding model to photonic
systems has been proposed in some 2D and 3D systems
[3,4]. This would imply that PBGs can also be formed
without the lattice periodicity. Indeed, in some 2D pho-
tonic amorphous structures, the PBG formations have been
reported [5,6]. However, even in those 2D examples, clear
PBGs are formed only for TM modes and no ‘‘complete’’
2D PBGs (PBGs both for TM and TE modes) are realized.
On the other hand, in 3D systems, which have larger
directional degrees of freedom and involve vector nature
of electromagnetic fields explicitly, PBG should be much

more difficult to be realized; the photonic structures with
3D PBG so far found are limited to very few types of
photonic crystals, and no photonic amorphous structures
with 3D PBG have been reported. In this Letter, we report
that the 3D PBG formation is, in actual fact, possible in a
photonic amorphous structure in spite of complete lack of
lattice periodicity. We also show that the photonic amor-
phous structure can confine light at a defect as strongly as
conventional photonic crystals can.

The photonic amorphous structure we present here is a
‘‘photonic amorphous diamond (PAD)’’, which is based on
a ‘‘continuous-random-network’’ (CRN) of diamondlike
tetrahedral-bonding configuration originally developed as
a model atomic-structure of amorphous Si or Ge [7]. For
detailed design of CRN, we used the CRN structure con-
structed and provided by Barkema and Mousseau [8]. This
CRN structure consists of a periodic arrangement of a
cubic supercell with the size �11:5d�3 (d: the average
bond length) The supercell contains 1000 atoms. We mod-
eled the PAD structure by connecting the tetrahedral bonds
with dielectric rods in air background. For comparison, we
also constructed the photonic crystalline diamond (PCD)
by connecting tetrahedral bonds in the crystalline diamond
structure with dielectric rods. Parts of the modeled struc-
tures are drawn in Figs. 1(a) and 1(b). We notice that the
PAD consists of a network of local tetrahedral-bonding
configurations, as in the PCD. However, the lattice period-
icity seen in the PCD disappears completely in the PAD.

The presence of the short-range order and the absence of
the long-range order in the PAD can be verified by exam-
ining the radial distribution function (RDF). Figure 2
shows the RDF calculated for the CRN structure. Here,
the RDF f�r� indicates the average atomic density in the
spherical shell (r, r� dr) around an arbitrarily selected
atom, where the density is normalized to the total atomic
density; when the structure has no order, f�r� should be
f�r� � 1 � const. We notice in Fig. 2 that the first peak at
r � d and the second peak at r � 1:7d are clearly seen.
The third and the fourth peaks are marginally observed at
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r � 2:4d and 3d, respectively. However, no peaks can be
detected in the range r > 3:5d, i.e., f�r� � 1 � const in
r > 3:5d. In conclusion, the RDF in Fig. 2 shows that our
PAD has a definite short-range order in the range r < 2d
but has no long-range order in r > 3:5d. It should be noted
that the range r > 3:5d corresponds to r > 1:5a, where
a � 4d=

���
3
p

denotes the lattice constant of the crystalline
diamond. This verifies the fact that our PAD has no trace of
the diamond-lattice periodicity. We confirmed this fact also
by examining the diffraction pattern of the structure; the
Bragg diffraction peaks completely disappear. So far, ef-
fects of disorder on PBG have been investigated in some
3D photonic crystals [9–11]. In those studies, various types
of disorders (positional disorder, size disorder, stacking
fault, etc.) are introduced into perfect photonic crystals
but the original lattice structures are preserved on average:
the Bragg diffraction peaks remain with some intensity
reduction. In this point, our PAD is substantially different
from those previously studied disordered 3D photonic
crystals.

The photonic density of states (PDOS) for the PAD with
the supercell of �11:5d�3 were calculated by a finite differ-
ence time domain (FDTD) spectral method originally de-

veloped by Chan et al. [12]. This method is, in particular,
useful for the PDOS calculations in disordered systems
[13] and quasiperiodic systems [14], for which large super-
cells are required, because this is an order-N method. In the
present study, we adopted the initial magnetic and electric
fields [13], H�r� �

P
GHGe

i�k�G��r�i�G and E�r� � 0,
where G denotes the reciprocal vector for the supercell,
k is the Bloch wave vector, HG is a randomly chosen unit
vector perpendicular to (k�G), and �G is a random
phase. Then, the time evolutions of H and E fields in the
supercell were calculated by a FDTD method under the
boundary condition of the Bloch theorem. Spectral inten-
sities were calculated by Fourier transforming the time
dependences of the fields at selected sampling points.
The sum of the spectral intensities over the sampling points
represents the PDOS. We calculated the spectra only for a
few k points in the Brillouin zone and present only the
spectra for k � 0 [14]; when the supercell is large enough,
fGg should be distributed in the reciprocal space densely
enough for us to locate unambiguously the spectral gaps.
For the PCD, we assumed a fictitious supercell of �5a�3 �
�11:5d�3. This supercell contains 1000 ‘‘atoms’’ and has
the same size as that of the PAD. We calculated the spectral
intensity for the PCD by applying the above-described
method to the fictitious supercell. This is for the purpose
of comparing the spectra calculated under exactly the same
conditions for the two structures. For the sampling points,
we selected randomly 100 points in the cubic unit cell for
the PCD and evenly distributed 1000 points in the supercell
for the PAD. In all the calculations, we assumed the Si-air
dielectric contrast, i.e., 13=1.

Figures 3(a) and 3(b) show the spectral intensities cal-
culated for the PAD and PCD, respectively. Here, the
radius of dielectric rod is 0:26d and the resultant air-
volume fraction is 78%. In the low frequency region below
about f � 0:15�c=d� (c: speed of light), the spectra have
well-isolated peaks, indicating that the sampling point
density in the reciprocal space is not enough. In contrast,
above about f � 0:15�c=d�, the spectra comprise a con-
tinuous curve with spikes on them, indicating that the
sampling point density is large enough for us to locate
unambiguously the gaps, if any, above f � 0:15�c=d�.
Indeed, we find clear PBGs at the frequency region around
f � 0:24�c=d� both for the two structures. The gap depths
are also nearly the same, indicating no appreciable
localized-state formations in the gap for the PAD. We
have confirmed that the gap for the PAD is reproduced
perfectly by the calculations for different k and by those
using different initial fields with different random sets of
fHGg and f�Gg. The gap width to the midgap frequency
ratio is 18% for the PAD and 26% for the PCD. Here, the
PBG position and width for the PCD agree well with those
calculated previously [12], indicating the validity of the
present calculations. It should be stressed here that the
supercell periodicity is not relevant to the PBG formation
in the PAD; we have confirmed that a different supercell-
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FIG. 2. Radial distribution function of the CRN structure used
for the construction of the photonic amorphous diamond. Broken
vertical lines indicate the positions r � a, 2a, 3a, and 4a (a: the
lattice constant of the crystalline diamond).

FIG. 1 (color online). 3D structures of the photonic amorphous
diamond (a) and photonic crystalline diamond (b). The former
was constructed from the CRN structure provided by Barkema
and Mousseau [8].
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size model provided by Barkema and Mousseau [8] gives
the PBG exactly at the same frequency region.

Figure 3(c) shows air-volume-fraction (Va=V0) depen-
dences of the gap width for the PAD and PCD. For the
former, the gap width is the largest at Va=V0 � 78% while
for the latter the largest gap of 27% is realized at Va=V0 �

82%. It should be noted that the PCD structure here with
Va=V0 � 82% is nearly the same as the champion structure
that has been reported to exhibit the largest gap ever found
(�30%) [15,16].

In realizing various types of light-controlling devices by
introducing defect levels in the PBG, the capability of
confining light strongly is essentially important. To see
whether our PAD can do this, we have investigated by a
FDTD method the attenuation behavior of an evanescent
wave within the gap. Figure 4(a) shows the dependence of
the field intensity (I) on the distance (r) from the surface
when the electromagnetic plane wave with the gap-center
frequency enters the structure. Both data show exponential
decay: i.e., I � I0 exp��r=rc� (rc: the attenuation length)
with nearly the same rc (�0:6d). This indicates that our
PAD can confine light as strongly as the PCD.

In general, exponential attenuation of light transmission
can also be caused by photon localization in disordered
photonic crystals [2,9,10]. When disorder is introduced in a
photonic crystal with PBGs, photonic states within the
bands and near a band edge possibly become localized,
and then exponential decay should be observed for the light
with the corresponding frequency. In such a case, rc is
generally much larger than the value rc � 0:6d evaluated
for the PAD. On the other hand, rc for the light within the
gap generally increases by the introduction of disorder due
to the creation of localized states in the gap [9,10]. Nearly
the same rc for the PAD as for the PCD shown in Fig. 4(a)
indicates no appreciable localized-state formations in the
PBG of the PAD.

In Figs. 4(b)– 4(d), the confinement of light at a defect in
the PAD is demonstrated. Here, a defect is introduced by
removing an arbitrarily selected dielectric rod. Figure 4(b)
presents the spectral intensity at the center of the removed
rod, where we can see a sharp defect peak at f �
0:242�c=d� in the PBG. The mode profiles corresponding
to this peak are shown in Figs. 4(c) and 4(d), where the
position of the removed rod is indicated by white circle or
rectangle. We can see that this mode is well confined to the
defect position, as expected from the strong attenuation of
evanescent wave shown in Fig. 4(a).

The photonic crystals with sizable 3D PBG so far found
are all based on the crystalline diamond structure, which
include Yablonovite, spiral diamond, wood pile, bcc dia-
mond, etc., as reviewed by Maldovan and Thomas [15].
Our finding that the amorphous diamond also exhibits a
sizable PBG proves that Bragg scattering by the periodic
lattice is not relevant to the diamond-gap formation and the
origin of the gap is in the diamondlike short-range order.
With regard to the realization of large PBGs, photonic
amorphous structures should have the following advan-
tage. In the case of photonic crystals, Bragg scattering is
stronger in certain crystal axes. This makes PBG aniso-
tropic, which should limit the width of the full 3D PBG.
This is the reason why crystals having more isotropic
Brillouin zone are favorable for larger PBG [16]. Concern-
ing this aspect, photonic amorphous structures are advanta-
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FIG. 3. Spectral intensities calculated for the photonic amor-
phous diamond (PAD) (a) and for the photonic crystalline
diamond (PCD) (b). The air-volume fraction is Va=V0 � 78%
for the two structures. Air-volume-fraction dependences of the
gap width for the PAD and PCD (c).
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geous because they are completely isotropic. By tuning
the structural parameters such as the degree of short-
range order in the amorphous structure, we may be able
to realize larger PBG than that in the champion crystalline
structure.

So far, only ‘‘photonic crystals’’ have been targeted in
fabricating 3D PBG materials. Our finding that photonic
amorphous structures can also have 3D PBGs should open
new possibilities in fabricating 3D PBG materials. For
example, 3D random network structures are known to
form by a new type of phase separation ‘‘viscoelastic phase
separation’’ [17] in various systems such as polymer solu-
tions, colloidal suspensions, protein solutions, etc. Some of
those random networks have been shown to possess local
tetrahedral-bonding configurations just like the PAD [18].
Thus, they should be strong candidates for photonic amor-
phous materials with 3D PBGs.

In conclusion, we presented the first amorphous struc-
ture ever found having 3D PBG in spite of complete lack of
lattice periodicity. This structure, ‘‘photonic amorphous
diamond (PAD)’’, exhibits a large PBG of 18% of the
center frequency for Si-air dielectric contrast. The attenu-
ation of the evanescent wave with the midgap frequency in
the PAD is as strong as that in a photonic crystalline
diamond. This fact indicates that the PAD can confine light
strongly at a defect, which was numerically demonstrated.
These findings present an important new insight into the
origin of the 3D PBG formation and open new possibilities
in exploring large 3D PBG structures and also in fabricat-
ing PBG materials.

We thank Professor G. T. Barkema of Utrecht University
for providing the coordinates of his CRN structures and

Professor T. Dotera of Kyoto University for valuable
comments.
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FIG. 4 (color online). (a) Attenuation
behavior of the evanescent wave with the
midgap frequency for the photonic amor-
phous diamond (PAD) and the photonic
crystalline diamond (PCD), where the
dependences of the incident electromag-
netic wave intensity on the distance from
the surface are plotted; (b) the spectral
intensity at the center of the removed rod
(blue) and that at the same position cal-
culated for the perfect structure; (c) and
(d) the defect mode profiles on two mu-
tually orthogonal planes. The defect is
introduced by removing a dielectric rod.
The position of the missing rod is indi-
cated by white rectangle or circle.
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