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A full characterization of nonclassical space-time–dependent correlations of radiation is formulated in
terms of normally and time-ordered field correlation functions. It describes not only the properties of
initially prepared multimode radiation fields, but also the dynamics of radiation sources. Some of these
correlation effects occur in the resonance fluorescence of a single two-level atom.
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Nonclassical effects of radiation have not lost any part of
their attraction since the early days of quantum physics [1–
3]. It took over seven decades until Einstein’s postulate of
the existence of photons could be verified by a clear
demonstration of the antibunching of photons [4]. Other
demonstrations of nonclassical radiation properties, such
as sub-Poissonian photon statistics [5] and quadrature
squeezing [6] were following soon.

In the field of quantum optics the study of nonclassical
effects of radiation was widely based on the Glauber-
Sudarshan P function [7,8]. Whenever it fails to have the
properties of a probability density, then the state is said to
be nonclassical [9,10]. This condition describes prominent
examples of nonclassical effects.

Recently some possibilities of a complete characteriza-
tion of nonclassicality have been developed for a
single mode of the radiation field. Observable conditions
could be derived, which are based on characteristic func-
tions [11,12] or on moments [13,14]. Both approaches lead
to infinite hierarchies of nonclassicality conditions in terms
of the corresponding quantities. The characteristic function
approach has already been used in some experiments
[15,16].

Nonclassicality of multimode radiation has been consid-
ered in some special cases only. Entanglement, a special
nonclassical property, is considered to be useful for quan-
tum information processing. A complete characterization
in terms of moments is known for bipartite continuous-
variable entangled states whose partially transposed den-
sity operator exhibits some negativities [17], for some
special cases see also [18,19]. There exist attempts to
generalize the method for the multimode case [20] and
for bound entanglement [21].

In the present Letter we provide a general characteriza-
tion of nonclassical correlation properties of radiation
fields in terms of space-time–dependent (normally and
time-ordered) field correlation functions. Beyond the char-
acterization of initially prepared quantum states of free
multimode radiation, this approach also describes the non-
classical effects caused by the dynamics of radiation
sources. The physical realization and the detection of the
new correlation effects are also considered.

Let us deal with field correlation properties in an arbi-
trary but fixed number of k space-time points. In practice
this number will depend on the used detection setup.
Consider an operator function f̂,

 f̂ � f̂�Ê����1�; . . . ; Ê����k�; Ê����k�; . . . ; Ê����1�� ; (1)

depending on the positive and negative frequency parts of
the electric field operators, Ê����i�, where i � �ri; ti� is the
space-time argument (i 	 1; . . . ; k). We expand the opera-
tor f̂ as

 f̂ 	
X1

fni;mig	0

cfni;mig
�Ê����1��n1 . . . �Ê����k��nk


�Ê����k��mk . . . �Ê����1��m1 ; (2)

where the notation fni;mig is used for the dependence on
n1; . . . ; nk, m1; . . . ; mk.

Classicality of normally and time-ordered correlation
properties can be defined as

 8f̂: h�
�
f̂yf̂�

�
i � 0; (3)

which generalizes the single-mode condition [14]. The
�
�

. . . �
�

notation (cf. [22]) denotes both normal (: . . . : nota-
tion) and time-ordering, with increasing times in the fields
Ê��� and Ê��� from left to right and right to left, respec-
tively. By generalizing the standard definition of the
P function (see [7,8,22]) to the functional

 P�fE����i�g� 	
�
�
�

Yk
i	1

�̂ �Ê����i� � E����i���
�

�
; (4)

the field correlation functions can be formally written as
those of classical stochastic processes. They behave like
classical ones, if P�fE����i�g� has the properties of a clas-
sical joint probability density. In the classical limit the
operators correspond to classical quantities: Ê����i� !
E����i� and f̂ ! f, ordering prescriptions are no longer
needed, and averages become classical ones, h. . .icl. In this
case the left-hand side (lhs) of Eq. (3),
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 h�
�
f̂yf̂�

�
i ! hjfj2icl; (5)

is indeed nonnegative in general.
Based on this results, a radiation field shows nonclass-

ical normally and time-ordered correlation properties in k
space-time points, iff

 9f̂: h�
�
f̂yf̂�

�
i< 0: (6)

This completely defines the nonclassical correlation effects

in the chosen space-time points. It is difficult, however, to
handle the nonclassicality condition in this form. The
operator f̂ must be considered for all choices of the co-
efficients cfni;mjg

. Moreover, it is unclear how to observe the

quantity h�
�
f̂yf̂ �

�
i for any operator f̂.

We reformulate condition (6) solely in terms of field
correlation functions. Inserting Eq. (2) into the lhs of
Eq. (6), we obtain a quadratic form:

 h�
�
f̂yf̂�

�
i 	

X1
fpi;qi;ni;mig	0

c
fpi;qig

cfni;mig
h�
�
�Ê����1��n1�q1 . . . �Ê����k��nk�qk�Ê����k��mk�pk . . . �Ê����1��m1�p1�

�
i: (7)

The necessary and sufficient condition for any violation of the nonnegativity of the quadratic form requires the negativity
of at least one of the principal minors of the form (7). In view of the lengthy expressions we may only outline the procedure
and consider some examples.

The nonclassicality conditions obtained from negativities of the second-order minor read as

 

jh�
�
�Ê����1��n1�q1 . . . �Ê����k��nk�qk�Ê����k��mk�pk . . . �Ê����1��m1�p1�

�
ij2 > h�

�
�Î�1��n1�m1 . . . �Î�k��nk�mk�

�
i


 h�
�
�Î�1��p1�q1 . . . �Î�k��pk�qk�

�
i; (8)

where Î�i� 	 Ê����i�Ê����i� is the intensity operator. These conditions are sufficient for the existence of nonclassical
correlations in the chosen space-time points. The necessary and sufficient conditions require the consideration of the
minors of all higher orders.

Let us give an example for nonclassicality conditions based on third-order minors, leading to inequalities composed of
sums of products of three correlation functions. Specifying the minors is equivalent to start with a simplified form of the
operator f̂, such as

 f̂ 	 c1�Ê
����1��m � c2�Ê

����2��n � c3:�Î�3��p:; (9)

with redefined coefficients ci. The resulting nonclassicality condition reads as

 

����������������

h:�Î�1��m:i h�
�
�Ê����1��m�Ê����2��n�

�
i h�

�
�Ê����1��m�Î�3��p�

�
i

h�
�
�Ê����1��m�Ê����2��n�

�
i h:�Î�2��n:i h�

�
�Î�3��p�Ê����2��n�

�
i

h�
�
�Ê����1��m�Î�3��p�

�
i h�

�
�Î�3��p�Ê����2��n�

�
i h:�Î�3��2p:i

����������������
< 0: (10)

More generally, the minor contains more complex corre-
lation functions, such as those in the condition (8).

We may further simplify the conditions (8). By choosing
the only nonvanishing powers as n1 	 m1 	 p2 	 q2 	 1,
we get

 h�
�
Î�1�Î�2��

�
i>

����������������������������������������
h:�Î�1��2:ih:�Î�2��2:i

q
: (11)

This is the photon-antibunching condition in its general
form, which can be also derived as a violation of the
Schwarz inequality, for example, cf. [22]. The intensity

correlation function on the lhs is nonnegative, so that the
absolute value can be omitted. In the given form the
antibunching condition also applies for nonstationary ra-
diation [23]. The stationary condition was used in the
pioneering photon-antibunching experiment in resonance
fluorescence [4].

It is straightforward to formulate higher-order general-
izations of the antibunching condition (11). In Eq. (8) we
choose for the nonvanishing powers n1 	 m1 	 N � n,
n2 	 m2 	 M�m, q1 	 p1 	 n, and q2 	 p2 	 m
(N � n and M � m), which leads to

 h�
�
�Î�1��N�Î�2��M�

�
i>

������������������������������������������������������������������������������������������������
h�
�
�Î�1��2�N�n��Î�2��2�M�m��

�
ih�
�
�Î�1��2n�Î�2��2m�

�
i

q
: (12)

If we further specify m 	 M and n 	 0, the condition

 h�
�
�Î�1��N�Î�2��M�

�
i>

����������������������������������������������
h:�Î�1��2N:ih:�Î�2��2M:i

q
(13)

represents a direct higher-order generalization of the anti-
bunching condition (11).

From the nonclassicality condition (8) one may also
obtain conditions for the normally and time-ordered
correlations of intensity and field strength. Such cor-
relations have been studied in the resonance fluores-
cence of a single atom [24] and their measurement has
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been analyzed [25,26]. A recently proposed method of balanced homodyne correlation measurements combines the
advantages of balanced homodyning with those of correlation techniques [27]. By using a strong local oscillator it allows
one to detect correlation functions of higher orders, even when the overall quantum efficiency is small.

Let us consider a typical example. Choosing in Eq. (8) the nonzero powers as ni 	 mi � pi with pi � 0, we obtain the
condition

 jh�
�
�Ê����1��p1 . . . �Ê����k��pk�Î�k��mk . . . �Î�1��m1�

�
ij>

����������������������������������������������������������������
h�
�
�Î�1��2m1�p1 . . . �Î�k��2mk�pk�

�
i

q
: (14)

It gives some insight in the nonclassical correlation prop-
erties of intensity and field strength operators, by compar-
ing normally and time-ordered correlation functions
containing the field strength (here the negative frequency
part) with intensity correlation functions. In the lowest
order we may choose p1 	 m2 	 1 as the only nonvanish-
ing powers, which yields

 jh�
�
Ê����1�Î�2��

�
ij>

������������������������������
h�
�
Î�1��Î�2��2�

�
i

q
: (15)

We can also formulate conditions for intensity-field
strength correlations of other types. Let us restrict the
generality of the operator f̂, for example, by setting

 f̂ 	 c1Ê
����1� � c2Î�2�: (16)

Inserting this expression into the condition (6), we get

 jh�
�
Ê����1�Î�2��

�
ij>

�������������������������������
hÎ�1�ih:�Î�2��2:i

q
: (17)

In general it depends on the chosen radiation sources, in
particular, on their intensity correlation properties, whether
this form of the condition is stronger than the form (15) or
vice versa.

It is also of interest to formulate nonclassicality condi-
tions including the full field strength. Equating the coef-
ficients of Ê����1� and Ê����1� in the operator f̂, the
positive frequency part in Eq. (16) is replaced with the
field strength operator, Ê�1� 	 Ê����1� � Ê����1�. Now the
nonclassicality condition is of the form

 jh�
�
Ê�1�Î�2��

�
ij>

�����������������������������������������
h:�Ê�1��2:ih:�Î�2��2:i

q
: (18)

The field strength-intensity correlations are no longer com-
pared with the quantum statistical properties of the inten-
sity alone. Note that nonclassical correlations of intensity

and field strength of lowest order have been discussed
under special conditions, such as for Gaussian fluctuations
[26].

In the following we deal with the question of whether or
not nonclassical correlation properties of the types intro-
duced above may occur in the irradiation of realistic
sources. As a simple example we consider the resonance
fluorescence of a single two-level atom, for the theory
cf. e.g. [22]. In this case we have detailed knowledge of
the high-order correlation functions to be considered. In
particular, the occurrence of photon antibunching is well
known. The general concept of nonclassical correlations,
however, applies to arbitrary radiation sources. For ex-
ample, it could serve for a more complete characterization
of the radiation in the mentioned cavity experiment [26],
but also for many other radiation sources.

Let us start to consider nonclassical effects based on
intensity correlation measurements of higher order, see the
condition (12). When at least one of the values of N or M
becomes two or larger, both sides of the inequality become
zero, due to the fact that a single atom cannot simulta-
neously emit two photons. Higher-order nonclassical ef-
fects of this type do not occur in resonance fluorescence
from a two-level atom, their observation requires other
types of radiation sources.

Consider now the situation for field strength-intensity
correlations. Whenever a term �Ê����i��n with n � 2 occurs
(i 	 1; . . . ; k) on the lhs of the condition (8), the corre-
sponding correlation function vanishes for the single-atom
resonance fluorescence. That is, such types of nonclassical
correlations do not exist. Based on this knowledge, how-
ever, we may formulate a variety of nonclassicality con-
ditions in terms of those higher-order correlation functions
which do not contain terms of the mentioned type. This
leads to inequalities of the form

 jh�
�
Ê����1� . . . Ê����l�Î�l� 1� . . . Î�k��

�
ij>

�������������������������������������������������������������������������
h�
�
Î�1� . . . Î�l��Î�l� 1��2 . . . �Î�k��2�

�
i

q
; (19)

for 1< l < k. To provide a nontrivial characterization of
nonclassical correlations in single-atom resonance fluores-
cence, the retarded times ti � ri=c must not become equal
for two space-time points. It is easy to verify by resonance
fluorescence theory that such nonclassical correlations ex-
ist for a two-level atom, since the rhs of the condition (19)
becomes zero. For getting more insight in the full time-
dependent correlation properties of higher orders on the
lhs, the correlation functions of the resonance fluorescence
can be calculated by standard methods, such as the quan-

tum regression theorem, see e.g. [22]. An experimental
demonstration clearly requires the detection of the corre-
lation functions occurring in the condition (19). Note that
one may consider a manyfold of other conditions for non-
classical space-time–dependent correlations by using
higher-order minors of the general quadratic form (7), for
example cf. inequality (10).

An open problem is the application of space-time–
dependent nonclassicality conditions for characterizing
entanglement of multimode radiation fields. Since the
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P functions of entangled states fail to be probability den-
sities, they are included in the conditions derived above. To
distinguish entanglement from other nonclassical effects
requires to handle time-dependent field commutation rules,
which is a nontrivial task that requires further research. For
details on normal- and time-ordering and time-dependent
commutation rules of source-attributed quantized radiation
we refer to [22].

In summary, we have studied the physical properties of
nonclassical space-time–dependent correlations: their
complete characterization, the realization of such effects
in resonance fluorescence, and their observation by bal-
anced homodyne correlation measurements. In general
nonclassicality is characterized by negativities of properly
arranged minors of various orders, whose entries are nor-
mally and time-ordered field correlation functions of arbi-
trarily high orders. The conditions completely describe the
nonclassical correlation properties, including entangle-
ment, of any realistic radiation field whose generalized
Glauber-Sudarshan P functional fails to be a joint proba-
bility density. This concept applies not only to multimode
quantum states in a nonclassical initial preparation, but
also to nonclassical properties emerging from the dynam-
ics of radiation sources.
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