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We demonstrate both theoretically and experimentally that phase gradients in a light field can be used to
create a new category of optical traps complementary to the more familiar intensity-gradient traps known
as optical tweezers. We further show that the work done by phase-gradient forces is path dependent and
briefly discuss some ramifications of this nonconservativity.
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Light’s ability to exert forces has been recognized since
Kepler’s De Cometis of 1619 described the deflection of
comet tails by the sun’s rays. Maxwell showed that the
momentum flux in a beam of light is proportional to the
intensity and can be transferred to illuminated objects,
resulting in radiation pressure that pushes objects along
the direction of propagation. This Letter demonstrates that
phase gradients can redirect radiation pressure to create
optical force fields transverse to the optical axis. Photon
orbital angular momentum (OAM) [1] is one experimen-
tally realized [2,3] example of this phenomenon. We then
put phase-gradient forces to work by combining them with
intensity gradients in holographically projected light fields
to create a new category of extended optical traps with
tailored force profiles.

The vector potential describing a beam of light of fre-
quency w and polarization £(r) may be written as

A(r, 1) = u(r)e'®e iwtg(p), €))

where u(r) is the real-valued amplitude and ®(r) is the
real-valued phase. We assume for simplicity that the light
is linearly polarized so that &(r) is real. For a plane wave
propagating in the Z direction, ®(r) = kz, where k =
n,,w/c is the light’s wave number, c is the speed of light
in vacuum, and n,, is the refractive index of the medium.
Imposing a transverse phase profile ¢(r) on the wavefronts
of such a beam yields

O(r) = k. (r)z + o(r), 2

where Z -V = 0. The direction of the wave vector,
k(r) = k.(r)Z + Ve, now varies with position, subject to
the constraint k> = |k|> = k2 + |V¢|?, which applies in
the paraxial limit, k > |V¢|. The associated electric and
magnetic fields are given in the Lorenz gauge by

E(r.1) = — %A(r, ) and H(r1) = ;v X A(r. 1),
3)

where w is the magnetic permeability of the medium,
which we assume to be homogeneous and isotropic.
Following Abraham’s formulation [4], the momentum
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flux carried by the beam is

I(r)Vo, 4)

1
g(r) == RelE* X H} =
c e

where I(r) = |u(r)|? is the light’s intensity, and where we
have employed the gauge condition V- A = 0.
The momentum flux separates into an axial component

£.(r) = kk,I(r)(n,y )12 and

k
CI(F)VGD &)

m

gl = "

transverse to the optical axis [5], which is responsible for
transverse forces.

More than a decade ago, Allen and co-workers [1]
pointed out that the helical phase profile, ¢(r) = €6, im-
bues a beam of light with an OAM flux, r X g, amounting
to €7 per photon. Here, 6 is the azimuthal angle around the
optical axis, and € is an integer describing the wave fronts’
helical pitch. This OAM is distinct from the photons’
intrinsic spin angular momentum [6,7]. Through it, even
linearly polarized light can exert a torque around the
optical axis [2,8]. Equation (5) reveals this to be a mani-
festation of the more general class of transverse forces
arising from phase gradients.

Intensity gradients also exert forces on illuminated ob-
jects [9]. In this case, the dipole moment induced in the
object responds to gradients in the field, yielding a force
proportional to the gradient of the intensity, which there-
fore is manifestly conservative [10]. For a small sphere of
radius a, the intensity-gradient force has the form [9,11],

kKa® rm* — 1
Fy(r) = nm7<m>vL (©)

where m = n,/n,, is the ratio of the particle’s refractive
index, n,, to the medium’s, n,. Unlike g, Fy can be
directed up the optical axis. The resulting axial restoring
force is the basis of single-beam optical traps [9].

Because beams of light have gradients in both the inten-
sity and the phase, the total optical force is not conserva-
tive. This is evident because
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VX g=—* (V1) x (VD) 7
mn,,

does not vanish in general. Although Ashkin pointed out
that optical traps exert nonconservative forces [10], sub-
sequent reports have treated optical tweezers as (conserva-
tive) potential energy wells.

We realize phase-gradient forces using a new class of
extended optical traps created through shape-phase holog-
raphy [12-15]. Our apparatus, shown schematically in
Fig. 1(a), uses a phase-only spatial light modulator
(SLM) (Hamamatsu X8267-16) to imprint computer-
generated holograms on a laser beam (Coherent Verdi
5W) at a vacuum wavelength of 532 nm. The modified
beam is relayed to an objective lens (Nikon Plan Apo,
100 X oil immersion, with a numerical aperture of 1.4)
that focuses it into the intended three-dimensional optical
trapping pattern. A beam splitter reflects the laser light into
the objective’s input pupil while allowing images at other
wavelengths to pass through to a video camera (NEC TI-
324 AIl).

The holograms designed for this study bring laser light
to a focus along one-dimensional curves, C, embedded in
the three-dimensional focal volume of the objective lens.
Each hologram also encodes a designated intensity pro-
file I(s) and phase profile ¢(s) along the arclength s of C.
This is accomplished by numerically back-projecting [16]
the desired field along C onto the plane of the SLM
to obtain the ideal complex-valued hologram, (r) =
|b(r)| exp(ip(r)). The shape-phase algorithm [12—14] as-
signs the phase shifts p(r) to the SLM’s pixels with a
probability proportional to |b(r)|. An alternate phase pat-
tern imprinted on the unassigned pixels diverts excess light
away from C [12].

The images in Figs. 1(b) and 1(c) show a focused line
trap [12] and ring trap [14], respectively, each designed to
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FIG. 1 (color online). (a) Schematic representation of the op-
timized holographic optical trapping system using shape-phase
holography to project extended optical traps. (b) Experimental
realization of a holographic line trap carrying a phase gradient in
the X direction, imaged in the plane of best focus. (c) Focal
pattern of a holographic ring trap with € = 30.

have uniform intensity and phase gradients. These images
were obtained by placing a mirror in the microscope’s focal
plane and imaging the reflected light [13]. Because the
holograms come to a diffraction-limited focus, their axial
intensity gradients are steep enough to trap particles in
three dimensions [9]. To study the phase-gradient force
predicted by Eq. (5), we track [17] colloidal spheres mov-
ing along these traps.

In the case of the line trap, we first subjected the trapped
particle to linear phase gradients, V¢ = ¢gxX, over the range
g = =12 radians/um. The insets to Fig. 2 show axial
sections through volumetric reconstructions of the trap’s
three-dimensional intensity distribution [13] for two differ-
ent values of ¢g. The diffraction-limited focal line remains
in the xy plane despite the imposed phase gradient. The
beam’s direction of propagation, however, deviates from 2
by the angle sin~!(g/k). This tilt directs a component of
the beam’s radiation pressure along X. The images in Fig. 2
confirm the phase gradients’ magnitude and uniformity.

The line trap was projected into an aqueous dispersion of
colloidal silica spheres 2a = 1.53 pum in diameter sealed
into the 40 wm thick gap between a glass microscope slide
and a no. 1 glass coverslip. Focusing the trap near the
sample’s midplane avoids reflections from the glass-water
interface and minimizes hydrodynamic coupling to the
walls. Equation (5) and the Stokes mobility law for a
colloidal sphere then suggest that a trapped particle’s
speed, v, should be proportional to q.

To test this prediction, we measured the time required
for a single sphere to travel the length, L =5 um, of a
100 mW trap as the sign of g was flipped 20 times for each
value of |g|. The observed root-mean-square off-line ex-
cursions of roughly 200 nm suggest axial and lateral trap
stiffnesses comparable to those of a pointlike optical
tweezer powered by 1 mW. Under these conditions, the
trapped sphere traveled along the line at speeds up to
2 wm/s when subjected to the largest phase gradients.
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FIG. 2 (color online). Dependence of mean velocity v on
phase-gradient ¢. Insets: Axial slices in the xz plane through
the line trap’s three-dimensional intensity distribution at two
values of gq.
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Results obtained by systematically varying ¢ are plotted in
Fig. 2. They show the anticipated linear dependence, ex-
cept very near ¢ = (, where phase-gradient forces are too
weak to overcome localized pinning centers created by
small uncorrected intensity variations.

More complicated phase gradients give rise to more
interesting physical effects. The particles shown in Fig. 3
also are trapped along a uniformly bright line trap of length
L =10 pm. This line, however, has a parabolic phase
profile, ¢(x) = *(gx)?, that is predicted to force objects
either out to the ends of the line or toward its center
depending on the sign. The images in Figs. 3(a) and 3(b)
demonstrate both effects for a pair of trapped colloidal
spheres. Axial sections through the three-dimensional in-
tensity distribution show that the phase-gradient barrier
results from light diverging along the line’s length, while
the well results from the projection of converging rays. So
long as the particles are rigidly confined to the uniformly
bright focal line, Eq. (7) suggests that the phase-gradient
force approximates a conservative potential energy
landscape.

Like holographic line traps, holographic ring traps, such
as the example in Fig. 1(c), can be endowed with arbitrary
phase profiles, including the uniform azimuthal phase gra-
dient, ¢(r) = €0, that defines a helical mode. A helical
profile, by itself, causes a beam to focus into a ring of light,
forming a torque-exerting optical trap known as an optical
vortex [2]. Whereas the radius of an optical vortex, Ry, is
proportional to its helicity [7,18], holographic ring traps
can be projected with any desired radius, R, independent of

FIG. 3. (a) Phase-gradient barrier and (b) phase-gradient well
in a uniformly bright line trap. (1) Two 1.5 wm diameter silica
spheres trapped on the line. (2) The uniform in-plane intensity of
the focused line. (3) Axial section through the measured inten-
sity, showing the divergence (a3) and convergence (b3) due to
the phase profile. Scale bar indicates 5 um.

€ [14]. This facilitates systematic studies of colloidal
transport under varying phase gradients. Also unlike opti-
cal vortices, holographic ring traps have strong enough
axial intensity gradients to trap objects in three dimensions.
This can be seen in the computed axial section in Fig. 4(a)
in which the trap appears as two bright focal spots on the
midline. Imposing a helical phase profile on a ring trap
suppresses the beam’s axial intensity through destructive
interference, diverting it instead to a radius, R, from the
axis [7,18]. If the ring’s radius R exceeds the vortices’, Ry,
the converging helical beam focuses not only to the in-
tended ring trap, but also to two conventional optical
vortices above and below the focal plane, which appear
as bright features in Fig. 4(a). This structure also is evident
in the ring trap’s measured three-dimensional intensity
field [13] in Fig. 4(b). The optical vortices’ comparatively
weak axial intensity gradients are evident in Fig. 4(a).

A ring trap with a uniform azimuthal phase gradient
exerts a torque about its axis. We demonstrated this by
tracking a colloidal silica sphere circulating around a holo-
graphic ring trap of radius R = 2.6 um projected into the
midplane of a 40 um thick sample. The trapped particle
was subjected to azimuthal phase gradients in the range
€ = £50, and its peak speed was measured [17] to within
10% for each value of the helicity. The results are plotted in
Fig. 4.

Like optical vortices, holographic ring traps carrying
orbital angular momentum are subject to ¢-fold and
2¢-fold azimuthal intensity variations due to nonideal
phase scaling [19] that trap the particle for |€| <¥.
[7,20]. For |€| > €., however, the particle’s peak speed

optical vortex

50
=
g
Eo
-
§§l
50F ¢ .
A |
50 0 0 20 40

14

FIG. 4 (color online). Colloidal transport driven by azimuthal
phase gradients in holographic ring traps. (a) Computed axial
section through a holographic ring trap of radius R = 20 um
and helicity € = 30. (b) Volumetric representation of the mea-
sured three-dimensional intensity field in a holographic ring trap
of radius R = 20 um and € = 10. Data points show the peak
speed v of a single colloidal silica sphere circulating around the
ring in (b) as a function of topological charge €.
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increases linearly with |€|, consistent with the predictions
of Eq. (5). Intermittent circulation near |€| = €, gives rise
to large velocity fluctuations characterized by giant en-
hancement of the particle’s effective diffusion coefficient
[20]. Disorder in the effective force landscape also gives
rise to interesting collective dynamics for multiple parti-
cles trapped on the ring, including transitions among peri-
odic, chaotic and weakly chaotic steady states [21]. Phase-
gradient forces in holographic ring traps therefore provide
useful model systems for studying fundamental problems
in nonequilibrium statistical mechanics. They also promise
practical applications as the basis for microscopic pumps
[22], mixers [23], and optomechanical micromachines
[24]. Azimuthal phase gradients also can be used to endow
a holographic ring trap with more complicated force pro-
files, even if the ring’s intensity is uniform.

We have demonstrated that phase gradients in a beam of
light give rise to forces transverse to the optical axis, and
that these forces can be harnessed for novel optical traps. A
well-established example, photon OAM in helical modes,
is shown to be a particular manifestation of this general
effect. Tuning optical traps’ force profiles with phase gra-
dients will be useful for manipulating microscopic objects,
and will greatly facilitate rapid measurements of colloidal
interactions, for example. Although phase-gradient forces
generally are nonconservative, they can act as conservative
force fields on appropriately restricted manifolds. More
generally, optical forces’ nonconservativity may engender
interesting effects in illuminated particles’ dynamics, in-
cluding departures from Boltzmann statistics for systems
nominally in equilibrium. Finally, we note in passing that
phase gradients give rise to spatial variations in the polar-
ization, which we have not considered in this Letter.
Although optically isotropic materials are not influenced
by polarization gradients, anisotropic materials can be.
Phase-directed polarization gradients therefore should pro-
vide additional independent avenues for controlling micro-
scopic systems.
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