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We examine stochastic processes that are used to model nonequilibrium processes (e.g., pulling RNA or
dragging colloids) and so deliberately violate detailed balance. We argue that by combining an
information-theoretic measure of irreversibility with nonequilibrium work theorems, the thermal physics
implied by abstract dynamics can be determined. This measure is bounded above by thermodynamic
entropy production and so may quantify how well a stochastic dynamics models reality. We also use our
findings to critique various modeling approaches and notions arising in steady-state thermodynamics.
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A theory of nonequilibrium physics is vital if we are to
understand such diverse phenomena as geological or bio-
logical processes which are inherently dissipative in na-
ture. Although a general theory remains both challenging
and elusive, it is now possible to obtain precise experimen-
tal data for mesoscopic objects such as RNA strands [1]
and optically trapped colloids [2] undergoing irreversible
manipulation. In turn this has allowed theoretical develop-
ments, such as strikingly general nonequilibrium work
relations, to be verified [3].

In this work, we address the fundamental question of
how to faithfully model irreversible, dissipative physics
with stochastic dynamics. We introduce an irreversibility
measure for stochastic processes which, in contrast to
standard expressions, respects such basic physics as frame
invariance. We find that an explicit prescription for a
system’s thermal environment—often absent in mod-
els—is essential if predictions for entropy production are
even to be possible. Using work relations for stochastic
systems [4] we find our main result, inequality (4) below,
which shows that such predictions always underestimate
the true dissipation, unless all relevant processes are mod-
eled. This suggests that a model predicting less dissipation
than is observed is incomplete, and one predicting more
should be rejected. Since our results hold for arbitrary
nonequilibrium states, we gain many insights into theories
and models of nonequilibrium steady states (NESS) [5]
which cannot be drawn from, for example, a similar ex-
pression recently derived for isolated systems constrained
initially to be at equilibrium [6].

We begin by reviewing the modeling paradigm intro-
duced by Katz, Lebowitz, and Spohn in their seminal work
on fast ionic conductors [7]. One takes the master equation
for a (discrete-time) process, Pt�1�C� �

P
C0Pt�C

0�M�C0 !
C�, in which Pt�C� is the time-dependent distribution of
microstates C. For a reversible, equilibrium system, the
transition probabilities M�C ! C0� are taken to satisfy the
detailed balance condition

 P��C�M�C ! C0� � P��C0�M�C0 ! C� (1)

with respect to the Boltzmann distribution P��C� � e��E�C�

where � is inverse temperature and E the internal energy.
This relation guarantees microscopic reversibility [8,9] in
the steady state, i.e., that any sequence of configurations is
witnessed with the same probability as its time reversal. To
model irreversible physics, and, in particular, a NESS, one
must deliberately violate detailed balance.

There is no obviously correct way to go about this, so
following [7] it is commonplace to invoke a local (or
generalized [10]) detailed balance principle. In this ap-
proach, (1) is taken to apply over some closed subset of
configurations, and a nonequilibrium system formed by
joining together subsystems that are in contact with heat
baths at different temperatures. For illustrative purposes,
we take the specific example of hard-core particles in a
one-dimensional linear potential, which, if connected to
particle reservoirs at different densities, would exhibit the
biased diffusion shown in Fig. 1(a). Alternatively, periodic
boundary conditions might be imposed [Fig. 1(b)], at the
expense of being able to couch the dynamics in terms of a
single-valued potential. Note, however, this modeling pro-
cedure can be used for all types of particle interaction and
in any dimension.

A problem with this approach is that one loses sight of
how the system interacts thermally and mechanically with
its environment, and could thus be argued to lack a firm
physical basis. Furthermore, it is not obvious that alterna-
tive approaches, e.g., those based on maximal-entropy

(a) (b)

FIG. 1 (color online). Biased diffusion arising from the local
or generalized detailed balance principles applied to hard-core
particles in a one-dimensional linear potential gradient under
(a) open and (b) periodic boundary conditions.
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analyses subject to macroscopic flux constraints [11,12],
offer more realistic descriptions of nonequilibrium physics
than the model-building tradition described above. We
address these shortcomings by introducing a framework
in which a model system’s thermal environment is made
completely explicit, which, as we now show, is necessary
to establish the degree to which a stochastic dynamics is
irreversible.

The standard way to do this is to compare the left- and
right-hand sides of the detailed balance condition (1). For
example, logarithms of their ratio appear in a widely used
expression for the entropy production attributed to
Schnackenberg [13], an action functional that exhibits a
Gallavotti-Cohen symmetry [14] and various time-
dependent generalizations [4,15], as well as the house-
keeping heat [16] that is instantaneously dissipated by a
NESS [17]. Their differences, meanwhile, have been pro-
posed to characterize a NESS [18], since instantaneous
physical currents (which vanish at equilibrium) can be
derived from them. The violation of (1) is thus almost
universally used to recognize a dynamics with a dissipative
steady state, despite the obvious shortcoming that an ob-
server can witness the former without the latter simply by
changing frame.

This difficulty is resolved by realizing that when com-
paring the probability of a trajectory with that of its time
reversal, the latter should not be drawn from the same
ensemble as the former, but from an ensemble in which
all degrees of freedom in the environment are also time
reversed. The dynamics that generate this second ensemble
we shall call the reverse process. We may now define the
following general measure of reversibility for any stochas-
tic dynamics, i.e., not restricting ourselves to ergodic time-
homogeneous Markov chains in discrete time (see also
Fig. 2). Let X denote a trajectory (C1; C2; . . . ; Cn) that visits
configuration Ci at time ti, possibly other (unspecified)
configurations at other times and eventually reaches, with
probability PT�CT�, configuration CT at a time T > tn.
Given an initial configuration C0 that is drawn from a

distribution P0�C0�, this trajectory is taken to appear under
the forward dynamics with probability P�XjC0�. This is to
be compared with the probability of seeing the time-
reversed trajectory X̂, in which the image Ĉi of Ci under
time reversal (i.e., with all velocities reversed) is seen at
time ti running backwards from time T to 0. Given a
starting configuration ĈT drawn from a distribution
P̂T�ĈT�, this reverse trajectory appears with probability
P̂�X̂jĈT�. If there is to be any possibility for the ensembles
of forward and reverse trajectories to coincide, we must
take P̂T�ĈT� � PT�CT�, i.e., start the reverse process by
immediate time reversal of configurations reached after
time T under the forward dynamics. Any other choice
requires us to make additional assumptions on the
dynamics.

In the spirit of Landauer’s principle [19], we now loosely
associate information lost under the dynamics—quantified
here by the additional information required to reconstruct
the forward trajectory ensemble from the reverse—with
irreversibility and dissipation. This amount of information
(in natural units) is given by relative entropy of the two
ensembles [20],

 �I �
X

C0;X;CT

P0�C0�P�XjC0� ln
P0�C0�P�XjC0�

PT�CT�P̂�X̂jĈT�
: (2)

To make contact with thermal physics, we assume that just
before the start of the forward and reverse processes any
heat baths present are manipulated by a thermostat in such
a way that the probability that any particular bath configu-
ration is realized is given by the Boltzmann distribution
with a well-defined temperature. Note that this necessarily
requires correlations between the system and bath to vanish
rapidly—this is the origin of dissipation, as will be seen
concretely below. Under such conditions, Jarzynski’s de-
tailed fluctuation relation [21]

 ln
P�X;�SenvjC0�

P̂�X̂;��SenvjĈT�
� �Senv (3)

applies (in a system of units where Boltzmann’s constant is
unity). Here, �Senv is the total entropy increase in the heat
baths under the forward dynamics. This is a random vari-
able if the trajectory X contains insufficient detail to
determine how much energy has been exchanged with
each heat bath separately. In deriving this formula, it was
assumed that the microscopic evolution is Hamiltonian
with respect to potentials that are time independent in the
baths but may exhibit time dependence in the system of
interest. Stochasticity enters from the Boltzmann sampling
of bath configurations and any coarse graining in the
specification of the trajectory X.

We finally arrive at an important inequality—the main
result of this work—by averaging over �Senv. An appli-
cation of the log-sum inequality

P
iai ln�ai=bi� �P

iai ln�
P
iai=

P
ibi� (which itself is a consequence of

t1 t1t2t2 T

space

time 0T
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e
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FIG. 2. Comparison of trajectories generated by the forward
and reverse processes. Forward trajectories of length T are
generated, at which point all velocities (shown as short arrows)
are flipped, and the reverse dynamics started. The heaviness of
the lines indicates the probability of the trajectories in each
ensemble. The central trajectory appears with the same proba-
bility in both ensembles, whereas the outer trajectories appear
with different probabilities, thus indicating an irreversible dy-
namics.
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Jensen’s inequality [20]) leads to

 0 � �I � h�Senvi � SG�T� � SG�0�; (4)

in which SG�t� � �
P

CPt�C� lnPt�C�, the Gibbs entropy of
the distribution at time t under the forward dynamics.
While a similar result was recently given for isolated
systems starting at equilibrium [6], our result (4) holds
for any initial condition and explicitly requires the system
to be open to the environment. Moreover, the thermostat-
ting of the baths means that �Senv is the true entropy
production, which is not always true of isolated systems
[22]. As we now discuss, (4) thus provides hitherto un-
available information—spatial and temporal—about heat
production in a general nonequilibrium system, e.g., a
NESS.

For example, the lower bound is attained only if every
forward trajectory appears with the same probability as its
time reversal in the reverse ensemble (i.e., no information
loss occurs and the process is reversible). This leads to an
extended detailed balance relation for a NESS, viz.,

 P��C�M�C ! C0� � P��C0�M̂�Ĉ0 ! Ĉ�: (5)

Note that one cannot decide on the reversibility of a
dynamics until its reversal M̂�Ĉ0 ! Ĉ� has been identified
(see below for concrete examples). Since equality of for-
ward and reverse trajectory sets implies P��C� � P̂��Ĉ�,
one finds (5) can be written in a more symmetric form
with P̂��Ĉ0� on the right-hand side. This condition is
equivalent to (5), as can be shown from conservation of
probability

P
C0M�C ! C0� � 1. The condition (5) can also

be stated as a Kolmogorov criterion [8]
 

M�C1 ! C2�M�C2 ! C3� 	 	 	M�CT ! C1�

� M̂�Ĉ1 ! ĈT�M̂�ĈT ! ĈT�1� 	 	 	 M̂�Ĉ2 ! Ĉ1� (6)

on every loop in configuration space of length T � 1. This
allows reversibility to be decided without prior knowledge
of the stationary distributions P��C� or P̂��Ĉ�. Equivalence
of (5) and (6) is shown in a similar way to the standard case
[8].

The upper bound in (4) is reached only if the stochastic
dynamics faithfully models all dissipative processes in the
physical system. This we have already seen from the fact
that if one cannot work out from the trajectory X how
much energy has been exchanged with each bath, �Senv in
(3) is a random variable and �I underestimates the true
entropy change. As for isolated systems starting at equi-
librium [6], the log-sum inequality implies that �I further
decreases under spatial coarse graining. Since in the
present, more general context, �I contains temporal infor-
mation, coarse graining in time, or reduction of a non-
Markov dynamics to a Markov process, has the same
effect. We thus suggest that this reduction in �I could
reveal the amount of heat dissipated at the finer-grained
scale, and that differences between a model’s prediction for

entropy production and that measured in a real system
might allow deficiencies in the model to be identified.

Finally, we use relation (4) to gain new insights into the
stochastic modeling approaches described earlier. The
physics of the open system [constructed using generalized
detailed balance [10] and as illustrated here in Fig. 1(a)] is
consistent with that described above. In particular, the
interpretation of lnM�C ! C0�=M�C0 ! C� as being propor-
tional to the energy exchanged with a reservoir holds, as
long as one is confident that all dissipative processes are
captured by the Markov dynamics of particles hopping on a
lattice, and further that one can unambiguously identify
which bath exchanges energy at any given transition in the
system of interest. Note that since particle velocities are not
included in the model Ĉ 
 C; also M̂ 
 M as the potential
is time independent. We also see explicitly that dissipation
results from a continuous thermostatting of the reservoirs
that enables particles to enter or leave the system with a
constant probability in every time step.

Models in which a current is induced by periodic bound-
ary conditions [see Fig. 1(b)] are more subtle. There are at
least two ways in which such dynamics may be realized in
a manner consistent with (3). First, one can apply a change
of frame to unbiased diffusion on a ring, and then discre-
tize: clearly, this yields a reversible dynamics. Alter-
natively, one can fashion a time-homogeneous Markov
process by coarse graining the response to a rotating po-
tential over one period of its motion. For concreteness, and
to keep track of all energy fluxes, we consider a dynamics
in which the energy function Et�C� is static during each
time step, and changed instantaneously between them. As
in [23], the dynamics is assumed to satisfy (1) while the
potential is static. One can compute transition probabilities
over the course of one period of rotation of a potential (e.g.,
a square well) in either direction, and show that typically
the forward and reverse dynamics, M and M̂, are not
simply related to each other, nor do they satisfy (6) [24].
Because of the coarse graining, the irreversibility measured
by �I underestimates the true dissipation in the system.

We remark that in our framework, coarse graining ge-
nerically leads to (and is in fact the only mechanism for)
the appearance of nonconservative forcing in the system of
interest. By contrast, such forces are central to models
based on Langevin equations (see, e.g., [15,17,25]), are
associated with the dissipation of housekeeping heat [16],
and have been argued to differ fundamentally from those
due to a moving potential. Since coarse graining blurs this
distinction, it is not clear in what sense it is meaningful. We
also remark that the nonconservative forces considered in
[4,15,17] are assumed not to change under time reversal,
which even in simple models is not the case for forces due
to a moving potential. As well as this, it seems often to
have been assumed that trajectories are sufficiently de-
tailed that the upper bound in (4) is in fact an equality,
and further that housekeeping heat can be defined on a per-
trajectory basis in terms of the instantaneous state of a

PRL 100, 010601 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
11 JANUARY 2008

010601-3



system and its environment [4,17]. Such a definition con-
flicts with the macroscopic quantity described in [16] if the
latter is interpreted as the heat exported by some sequence
of dissipative steady states if one could somehow switch
between them without incurring additional entropy costs.
For these costs to be removed when averaging over all
microscopic realizations of an arbitrary switching process,
one finds that details of the history of this process must
appear in the single-trajectory expressions, contrary to
[4,17]. We thus contend that far greater clarity about the
meaning of central quantities in the putative framework of
steady-state thermodynamics [16] is necessary.

Finally, we examine modeling approaches in which
transition probabilities are obtained from maximal-entropy
inference subject to macroscopic flux constraints [12]. If
this is to be interpreted as a general recipe for deriving a
stochastic dynamics, then we have shown the need to
derive both the forward and the reverse dynamics, the latter
obtained from time reversal of all driving forces, using this
procedure. If all macroscopic fluxes simply change sign
under time reversal, the outcome will be a reversible
dynamics, and so—at least within the framework put
forward here—one needs to argue for time-asymmetric
macroscopic constraints to realize a dissipative dynamics.
However, the theory developed in [12] is intended to apply
to internal portions of a larger sheared system, and as such
are in contact with nonequilibrium reservoirs, not the
thermostatted heat baths described here. It would be inter-
esting to try and interpret our definition of reversibility in
this more general context.

In summary, we have argued, by examining what it
means for a stochastic process to be reversible, that the
presence of dissipation in a model steady state can only be
decided once a reverse process, which demands knowledge
of the environment, is known. Using Jarzynski’s detailed
fluctuation theorem (3) and results from information the-
ory, we have specified a physical environment that allows
information loss to be bounded above by the thermody-
namic entropy production, extending to a much larger class
of nonequilibrium systems a result of [6]. This allows
physical mechanisms by which the system is driven and
heat dissipated away to be identified in otherwise abstract
models of a NESS, illustrating with the particular examples
shown in Fig. 1. We note that although the standard de-
tailed balance condition (1) is satisfied in all these models,
only in some is the steady state actually dissipative.
Although we have couched our discussion in terms of
discrete-time Markov processes, everything we have said
also applies in the continuous-time limit.

While we have mostly taken a theoretical perspective,
we hope that the main result (4) will be useful experimen-
tally, e.g., to determine whether a stochastic model cap-
tures all relevant dissipative processes, as we have
proposed. The hypothesis that decreases in �I under
coarse graining relate to dissipation at a given scale could
also be tested explicitly. Finally, we see, from the difficulty

in discriminating between nonconservative forces and
those due to coarse graining a moving potential, for ex-
ample, that in the field of nonequilibrium statistical me-
chanics conceptual problems remain.
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