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The general problem of finding the ground state energy of lattice Hamiltonians is known to be very
hard, even for a quantum computer. We show here that this is the case even for translationally invariant
systems in 1D. We also show that a quantum computer can be built in a 1D chain with a fixed,
translationally invariant Hamitonian consisting of nearest-neighbor interactions only. The result of the
computation is obtained after a prescribed time with high probability.

DOI: 10.1103/PhysRevLett.100.010501 PACS numbers: 03.67.Lx, 05.50.+q

The difficulty of simulating the dynamics of quantum
systems by classical means was recognized by Feynman
[1] more than two decades ago. He proposed to use another
system, a quantum simulator, to overcome this problem,
introducing several visionary ideas about quantum compu-
tation. At the same time, very powerful classical tech-
niques have been discovered, which allow us to tackle
important problems in many-body physics. One of the
most important questions in this context is to decide which
kind of problems can (or cannot) be efficiently simulated or
solved by quantum or classical simulators.

Systems in Nature typically possess certain symmetries
(like homogeneity, or translational invariance). Thus, it is
relevant to consider the above questions under the restric-
tions imposed by some of those symmetries. In this work
we concentrate on 1D spin chains with a translationally
invariant (TI) Hamiltonian and address the following ques-
tions: (i) Is it possible, given a quantum computer, to
simulate those systems? (ii) Can such a physical system
perform arbitrary quantum computations?

Regarding the first question, we show that if it would be
possible to find the ground state energy of any TI
Hamiltonian in 1D, then one could solve all QMA prob-
lems. Those are the ones belonging to the complexity class
called ‘‘quantum Merlin Arthur’’ [2], which is the quantum
analog of NP (nondeterministic polynomial time problem),
and which is believed to be different from BQP (bounded
error, quantum, polynomial time problem), the one corre-
sponding to the problems a quantum computer can solve
efficiently. In other words, if it were possible, then a
quantum computer could solve efficiently (in poly time)
very difficult problems, something which is believed not to
be true by computer scientists. In order to derive this result,
we build on the recent work [3]. There they show that all
QMA problems could be solved efficiently if one would be
able to find the ground state energy of (general, i.e., not
restricted to be TI) 1D chains with nearest-neighbor
interactions.

Regarding the second question, we show that indeed it is
possible to perform arbitrary quantum computations if one
has a certain fixed, TI Hamiltonian. One can encode the

program in the initial state, and the result is obtained with
very high probability after a certain time, with at most a
polynomial overhead in the number of qubits with respect
to a standard quantum computer. We stress that, as opposed
to previous works [4], the Hamiltonian we build is fixed
and independent of the computation to be performed. This
may be relevant in certain implementations of quantum
computation, like in atoms with optical lattices [5]. In that
case, one can think of preparing a particular initial (product
state) in a regime where the atoms are well separated [6],
and then bring them closer (by changing the angle between
the lasers that create the lattice) such that they experience a
constant interaction (mediated by virtual transitions and
cold collision). Note that our work does not contradict the
nonexistence of a ‘‘general purpose programmable quan-
tum computer’’ [7], since this result was about the stronger
assumption of applying the full continuous group of uni-
tary operators. Our scheme can be seen as a combination of
a cellular automata [8] approach with a continuous-time
quantum walk [1]. In fact, we will refer to our model as
‘‘continuous cellular automaton.’’ On the other hand, as
opposed to the standard quantum cellular automata, ours
has no classical analog. Furthermore, our model can be
seen as a different paradigm to the standard gate based
quantum-computer since: (i) it is continuous in time; (ii) it
has a fixed and universal Hamiltonian, independent of the
program to be run; (iii) the Hamiltonian is translationally
invariant.

Ground state energy in TI systems.—We start out by
showing that finding the ground state energy E0 of any TI
Hamiltonian in a 1D chain is very difficult (as we increase
the number of sites), even for a quantum computer. In fact,
we show that for each QMA-complete problem one can
find a TI Hamiltonian, Hn, such that: E0 � 0 if the answer
to the problem is ’yes’; E0 > 1=�Poly�n��, if the answer is
no. Here Poly�n� denotes a polynomial in n. Our result
heavily relies on the recent discovery [2,3] that QMA-
complete problems can be encoded in the ground state
energy of a Hamiltonian hn describing a 1D chain of n
system with d � 12 levels each and with nearest-neighbor
interactions. This is, roughly speaking, done by encoding a
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complete quantum computation, including every time step
and the time itself, into the ground state of the
Hamiltonian. Each local Hamiltonian adds a penalty in
energy, if one step of the computation is not carried out
(encoded) correctly.

Our strategy is to build a TI Hn out of the non-TI hn by
increasing the dimension d by a factor of 2, i.d., by adding
a qubit at each site. To prove this, let us assume a chain of
length n with periodic boundary conditions. Furthermore,
we assume that hn [2,3] has a minimum eigenvalue E0 � �
(and corresponding eigenvector j�0i) that defines the so-
lution to a (QMA) problem Q in the above sense. We will
now construct a TI Hamiltonian Hn having a minimum
eigenvalue that still solves the same problem. Hn acts on a
chain where every sites contains a spin (s) and, in addition,
one extra qubit (q).

Let us define a Hamiltonian on this chain by
H0 �

Pn
i�1 j1ih1j

�q;i� � h�s;i;...;i�n�n , where the label (q; i)
indicates that the operator is applied to the qubit-system
at site i and (s; i; . . . ; i� n) that the operator is applied to
all the spins at the sites (i; . . . ; i� n) in this order, where
we identify the sites separated by n sites. That is, if the
qubit at site i is in the state j1i, then the Hamiltonian hn is
applied to all spins at (i; . . . ; i� n). Obviously, H0 has an
n-degenerated eigenvalue of � with corresponding eigen-
vectors j ii � j100 . . . 0i�q;i;...;i�n� � j�0i

�s;i;...;i�n�, where
the superindexes indicate the positions in the same
sense as for the operators above. This eigenvalue would
give the right answer to the problem Q, but it is not
the minimum eigenvalue; H0 has a zero subspace when-
ever all qubits are j0i. To avoid this we define P � 1�
P
kj1ih1j

�q;k� �
P
k00�k0 j1ih1j

�q;k0� � j1ih1j�q;k00�, where k, k0,
k00 run from site 1 to n. This operator penalizes any
configuration where the number of qubits in sate j1i is
not equal to one. Finally, we define Hn as Hn �

1
nH

0 �
1

n�n�1�P. Hn is TI, and contains up to three-body interac-
tions only. In case hn has a zero eigenvalue the same holds
for Hn which is proved by the corresponding eigenvectors
j ii. Otherwise, since H0 is lower bounded by � and P by
1, Hn is lower bounded by min��n ;

1
n�n�1��. Note, that this is

still decreasing only polynomially in n. Therefore, Hn
gives the same answer to the problem Q as hn did, q.e.d.
Note that unlike the original Hamiltonian hn this TI
Hamiltonian is not a nearest-neighbor Hamiltonian any
more. But to relax the condition of only nearest-neighbor
interactions is required for a TI Hamiltonian, because
otherwise its number of parameters do not scale with the
length of the chain, which makes the system trivial in the
sense of a complexity theoretical description.

Continuous cellular automaton.—Now, we introduce a
programmable quantum computation scheme for an infi-
nite chain of quantum systems of dimension d � 30. The
program is encoded into the initial state, while the time
evolution is fixed and given by a universal TI Hamiltonian
with nearest-neighbor interaction only. This could be con-
sidered as a proof of principle for an new TI quantum

computation scheme. We will start by introducing a simple
quantum computing scheme. Later on, we will show how
this quantum computer can be simulated by a continuous-
time evolution. We consider a simple quantum computer
with an n-qubit ‘‘hard disk’’ and a read and write head, that
we call the pointer. The pointer can be moved such that we
can address single qubits. Furthermore, the pointer has an
internal quantum state, a qubit. To perform any quantum
computation we write a program consisting of five differ-
ent commands: (L) The pointer is moved one site to the
left; (R) same but to the right; (S) the qubit at the position
of the pointer and the internal state of the pointer are
swapped; (G) a G Gate [8] on those two qubits is applied.
The G gate allows for arbitrary quantum computations
(within the standard gate model) if it can be applied
between any two qubits. In this simple model this can be
accomplished by loading qubits with the S command into
the internal pointer state, which can then be moved to any
other qubit. We now encode this quantum computer into a
higher dimensional chain: Every site in the chain has three
registers. A ‘‘qubit’’ register (q) having dimension 2. It acts
like the normal qubit of the quantum computer. A
‘‘pointer’’ register (p) having dimension 3. Here we encode
the pointer, where 0 indicates no pointer and 1 or 2 the
presence of a pointer with an internal qubit state. Finally, a
‘‘program’’ register (c) having dimension 5: One for
‘‘e � empty’’ and the rest for commands fL;R; S; Gg.
The total dimension of one site is then 30. We choose n
neighboring sites to be the ‘‘quantum computer’’, i.e., the
qubit-registers of those sites correspond one to one to the
qubits of the quantum-computer we want to simulate [see
Fig. 1(a)]. The pointer registers are in state j0i everywhere,
except for one site which contains j1i. The program is
written in the program register in an area to the left of
the quantum computer, where the commands are arranged
in the order they should be executed from right to left. The
rest of the program registers are filled with jei.

We assume now a TI Hamiltonian with nearest-neighbor
interactions, H �

P
iHi, where Hi denotes a two-site

Hamiltonian acting only on the sites i and i� 1 and is
given by Hi �

P
C2fL;R;S;GgjeihCj

�c;i� � jCihej�c;i�1� �

U�pq;i;i�1�
C � H:c: The first two operators only act on the

two program registers at sites i, and i� 1, respectively,

FIG. 1. (a) A 7-qubit quantum computer encoded into a 1D
chain. The pointer is represented by the 1, the program is
encoded to the left of the quantum computer. The sites are
counted from the left to the right. (b) The system can be mapped
onto another system, where every command correspond to an
electron that is allowed to hop to nearby sites.
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while UC’s are unitary operators acting both on the qubit
and pointer register at those two sites. The unitaries are
now defined as follows: The operations US and UG are
controlled unitaries which implement the two-qubit S and
G gates between the qubit and pointer registers only if
there is a pointer present at site i. In this case a swap-gate
or G gate, is applied on the qubit register and the internal
qubit state (j1i, j2i) of the pointer register. If no pointer is
present (j0i) nothing happens. UL swaps the two pointer
sites while UR swaps the two-qubit sites. Let us assume
now, that we apply one of those unitaries on every pair of
sites (i, i� 1) starting from the left end of the chain going
step by step to the right. US and UG will do nothing until
we reach the position where a pointer is present in the first
of the two participating sites. In this case, the correspond-
ing gates are applied. The UL gate will swap the two
pointer states at every position. As a result the pointer,
marked by j1i, is moved one step to the left. Finally, UR

will swap the two qubit registers. As a result the whole
qubit-register chain is moved one step to the left. Relative
to thequantum computer position, the pointer is moved one
step to the right. Therefore, if such a sequence of unitaries
is applied from left to right the corresponding set of
commands is applied to the quantum computer. Note,
that it is sufficient to start this sequence of unitaries at
any position to the left of the quantum commuter and to
stop it once they are to its right. Our claim is now that this
basically is what the time evolution does.

To this aim, we consider the time evolution operator
e�iHt �

P
n
��iHt�n

n! . Applied to the initial state jstarti we
just end up in a linear combination of states of the form
Hnjstarti. Since H is defined as a sum of terms of the form
hCi :� je; CihC; ej�c;i;i�1� �U�pq;i;i�1�

C (and hCyi ), we can
write the result of a time evolution as a linear combination
of states of the form hn 	 	 	 h3h2h1jstarti, where every hk 2
fhCi ; h

Cy
i g. The effect of any such hCi on a state is the

following: it either moves the command C from place i
to (i� 1) and applies UC to the sites (i, i� 1), or it maps
the state to zero if no C is at i and no empty space jei at
(i� 1). In the same manner hCyi results in a state where the
command C is moved from (i� 1) to iwhileUyC is applied.
Therefore hn 	 	 	 h3h2h1jstarti is either zero, or a state
where several of the commands have moved while apply-
ing the assigned unitaries (or their conjugates) all the way
from their initial to their final position. Note that such a
command can only move, if the a neighboring site is in the
state jei, i.d., up to some jei’s in between the order of the
commands in the program register never change. If a
command moves to the right and afterwards to the left,
we end up in the same state since UC and UyC cancel each
other. This implies that two states hn 	 	 	 h3h2h1jstarti,
gm 	 	 	 g3g2g1jstarti are equal, iff the configuration of
commands in the program registers are equal. That is, a
measurement of all the command registers leads exactly to
a state of the form hn 	 	 	 h3h2h1jstarti, where

hn 	 	 	 h3h2h1 can be chosen to be any combination that
maps the initial commands to the measured combination.

In particular, suppose that we measure after some time
evolution a configuration where all the commands that
were initially to the left of the quantum computer [see
Fig. 1(a)], are found to its right. In this case the whole
program has been executed (in the right order) by the
quantum computer and we can read out the result. If this
is not the case, we can continue the time evolution and
repeat until we found a positive result. To boost the proba-
bility of success, we can increase the program code by
some irrelevant code [see Fig. 1(a)], e.g., by adding jLi0s
that do not affect the result of the computation if carried out
after the real program. This irrelevant code will act as a
kind of barrier, that prevents the real program code to move
to the left and forces it to do the computation. In conclu-
sion, the computation scheme has three steps: (i) preparing
the initial state; (ii) applying a fixed time evolution;
(iii) measuring the command register to verify a successful
computation [otherwise repeating (ii)-(iii)].

In order to verify that this is an effective way of carrying
out quantum computations, we have to guarantee that the
probability of finding the whole program to the right of the
quantum computer is finite after a finite (polynomially)
time. To this end we have to calculate (a lower bound
to) the probability of success. Since the states
hn 	 	 	 h3h2h1jstarti are completely defined by only the
configuration of the commands, we can map our system
onto a chain of qubits, where j0i means ’empty’ and j1i
means ‘‘command.’’ We do not have to specify the ’com-
mand’ because the order of the commands stays unchanged
under the evolution so that we can identify a command by
its relative position. The Hamiltonian simplifies to H �P
iHi with Hi � j0i1i�1ih1i0i�1j � H:c:. We see that the

efficiency of the computation does not depend on the
specific program we run. Let us take this system as
(spinless) electrons in a lattice [see Fig. 1(b)], where j1i
stands for an electron and j0i for an empty site and Hi

is a hopping term. Thus, we end up with noninter-
acting fermions in second quantization. Now we go back
to first quantization, where we just have to consider a
single electron Hamiltonian, HS �

P
kjk� 1ihkj � H:c:,

where jki denotes now the electron sitting at site k. The
total Hamiltonian can then be written in first quantization
as H �

P
iH

S
hii, where hii is now labeling the different

electrons. The single electron problem with Hamiltonian
HS can be solved for periodic boundary conditions. Let us
assumeM sites with periodic boundary conditions, then the
eigenvectors are given by  q �

1����
M
p

P
xe
i�2�=M�xqjxi with

corresponding eigenvalues "�q� � 2 cos�2�M q�. One elec-
tron sitting at site y is written in terms of the eigenvectors
as �y �

1
M

P
q qe

�i�2�=M�yq � 1
M

P
q;xe

i�2�=M��x�y�qjxi.
After the time evolution, the state is changed into �y;t �
1
M

P
q;xe

i�2�=M��x�y�q�i"�q�tjxi. Since we are dealing with
non–interacting fermions, we get the solution for N elec-
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trons, up to fermionic antisymmetrization, by the tensor
product. We assume now N electrons sitting in the first N
sites leading to the state  0 � S�j�1; �2; �3; . . . ; �Ni�,
where S denotes the fermionic antisymmetrization opera-
tor. After waiting a time t we end up in the state  t �
S�j�1;t; �2;t; �3;t; . . . ; �N;ti�.

Now we compute the probability p1 to find electron h1i
at time t still in one of the first N sites. The initial vectors
�y are orthogonal and stay orthogonal under an unitary
time evolution. The reduction of  t to electron h1i gives us
�1=N�

P
yj�y;tih�y;tj. The off-diagonal terms j�y1;tih�y2;tj

vanish due to the orthogonality of the permutated �y;t for
the electrons h2i to hNi. The probability p1 to find electron
h1i in one of the first N sides yields p1 �

1
N 
PN

y�1

PN
x�1 jh�y;tjxij2. In [9] it is shown that by choosing

t to be proportional to N, e.g. t � 5000N, we can bound
this probability to be smaller than a fixed constant, e.g.,
p1 < 0:3. So we can guarantee to find electron h1i after a
polynomial time with probability p > 0:7 outside the start-
ing area. Note that electron h1i is not localized in site one at
time zero, but is spread over the whole starting area due to
the fermionic antisymmetrization. The same calculations
holds for all the other electrons. The expected number of
electrons inside the starting area is given by Np1, whereas
the ones that move outside this areas is given by N�1�
p1� � Np.

For a successful computation a fixed number k of elec-
trons have to leave their starting area. Let us assume that
we find in every single shot q electrons with probability pq,
with

P
qqpq � Np,

P
qpq � 1. If the number of electrons

is bigger than k the computation is successfully done. The
success probability is ps �

P
q>kpq under the above con-

strains. To get an lower bound for ps let us assume the
worst case scenario and minimize ps. The minimum is
attained when we either get N electrons with probability
pN � ps or (k� 1) electrons with probability p�k�1� �

1� ps under the condition that p�k�1��k� 1� � psN �
Np. From this we can conclude that the success probability
ps >

1�k�Np
1�k�N which can be made arbitrarily close to p by

choosing N to grow polynomially with k. Now let us apply
this to our model. We have to distinguish between the
electron leaving the starting area to the left and to the right,
because only the ones going to the right will carry out the
program. But, due to the reflection symmetry of the prob-
lem, we can assume all electrons moving in the right
direction, what can be corrected by an irrelevant factor of
2 in the following discussion. We have a program of length
lp and a quantum computer of length lq. Instead of search-
ing for lp electrons to the left of the quantum computer we
can search for lp � lq ‘‘electrons’’ leaving the starting
area. The extra lq electrons will be just part of the irrelevant
code; that guarantees that the real program completely

passed the quantum computer. Then we choose N to be,
e.g., �lp � lq�2. The above calculation then tells us that
after a time of 5000�lp � lq�

2 the computation is successful
with a probability higher than p � 0:7. Therefore the
evolution time grows only polynomially in the size of the
quantum computer and the length of the program.

Conclusion.—We have derived two results regarding the
use of a quantum computer in the presence of translational
invariance, a typical property of Nature: (i) If one could
simulate any translationally invariant 1D chain, then one
could solve all QMA problems. (ii) It is possible to build
continuous-time automata that are as powerful as quantum
computers. The first result implies that, if as it is believed,
BQP � QMA, then not even a quantum computer could
solve translationally invariant 1D problems, i.e., solving
general TI systems is much harder than BQP or even NP.
The second one implies that quantum computation is pos-
sible with a spin chain that has a fixed universal
Hamiltonian. The computation itself requires only enough
patience but no active further control. This last result
should be considered as a proof of principle, since experi-
mentally it will be very difficult—if not impossible—to
implement such a Hamiltonian. However, it may be pos-
sible that with simpler Hamiltonians the same result is true,
something which may have very interesting experimental
implications.
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