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Here X is the photon mass, and P and P' denote
the incident and outgoing electron momenta. nB
is just the second-order radiative correction to a
vertex, neglecting the so-called magnetic current
of the electron, which does not give the infrared
divergence. aB is a function of the invariant mo-
mentum transfer t= (P'-P)2 and does not depend
on the energy of scattering. ' The factor exp(nB)
is related to the electron-positron scattering be-
cause aB has an imaginary part for t &4m2, cor-
responding to the scattering in the electron-posi-
tron channel. %e obtain this from the second term
of (I) where, replacing P' by -P', the two electron
propagators can be simultaneously singular for
physical values of p and p'. Taking the center-
of-mass system and writing s = (P +@ ')' = 4E'
=4(p2+m2) instead of f, we obtain

I ~, '+ (p+ p')'
I p' I

=
I p I. (2)

It will be noticed that the integrand is related to

Recently, I ivy' pointed out that the exponential
infrared factor which is involved in the cross sec-
tion for electron scattering had exactly the form
we would expect from the existence of Regge poles
in the electron-positron channel. Furthermore,
I ivy showed that this Regge trajectory gave to
some extent the known positronium fine structure.
However, in the infrared approximation it is not
the elastic cross section but rather the total cross
section including the emission of an arbitrary
number of undetected photons that shows the char-
acteristic energy dependence due to a Regge pole.
Then, the identification of the Regge pole does
not seem completely convincing. The purpose of
this note is to give an alternative but less esoteric
explanation as to why some information on the
positronium spectrum can be derived from the in-
frared factor.

The amplitude for the elastic scattering of an
electron by a potential involves a factor exp(otB)
due to the radiative correction by an arbitrary
number of soft virtual photons, where B is de-
fined by

i~
t

d'a (2p-k)2 (2p'-0) ~ (2P-0)
4~2j 1 2 g2 {P2 2p P)2 (P2 2pI, P)(P2 2P, g)

the one-photon exchange potential between two
charged scalar particles on the energy shell,

n I 4E2+ (p+ p')
{P 'P}=

2 ''4E''
(p -p)'+~'

Performing the angular integration, we obtain,
apart from a nonlogarithmic term,

E'-m' V' A+ — +—+ V(2) q(r)=0,
m apl

(7)

where we assume 2&{2)-0as r-~. As indicated
later, this form of equation results from a rela-
tivistic two-body equation by an "asymptotic" re-
duction and differs from the nonrelativistic re-
duction by relativistic kinematical factors which
we keep here. Equation (7) is equal to the Schro-
dinger equation for x-~ if we replace A by n,

exp[i ImnB]= exp[i Imy(s) 1n(2p/z)], (4)

where y(s) is the Regge trajectory, given by Ldvy
and is given by

Imy(s) = n(s-2m2)/[s(s-4m2)]'~.

The logarithmic singularity in (4) comes from the
singularity of the potential (3) for forward scat-
tering.

Now we recognize that Immy gives an l-independ-
ent contribution to the phase shift for electron-
positron scattering and that this large phase shift
proportional to ln(2P/X) is physically of the same
origin as the familiar infinite Coulomb phase. '
In fact, in the nonrelativistic limit, (4} reduces
to the familiar Coulomb phase for a reduced mass
1

~3 7

exp[i a (m /2p) in(2$/X) ].

Thus, whatever complicated interaction we may
have between physical electrons and positrons,
only the part of it which behaves like const/2. at
a large separation will be responsible for the
factor (4). Conversely the factor (4) describes
just the asymptotic behavior of the electron-
positron system due to such a long-range force.

A simple and physical way to understand the
relation between this Coulomb phase and the spec-
trum is to study a wave equation which reproduces
the universal phase factor (4}. As such an equa-
tion, we take
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and we should obtain (6) for this case. Hence to
obtain (4), we have to choose

W = (2p/m) 1m'(s) = o. (2E2-m2) /Zm. (6)

exp[- Ip Ir].

This must give the asymptotic radial wave func-
tion for the bound state when s is equal to a bound-
state energy. However, the asymptotic behavior
of a bound state cannot be determined from the
1/r potential only. It does depend on the short-
range potential V(r), which we do not know. Only
when we neglect V(r) do we know that a bound state
behaves like r" exp[- Ip Ir] for a principal quan-
tum number n The negl. ect of V(r) may be justi-
fied if for large 1 the centrifugal barrier is much
bigger than V(r) near the origin. We then have

i imy(s ) = n.
n

The spectrum we obtain from this equation must
be a part of the real spectrum which we would
get neglecting all short-range forces. ' Equation
(11) differs from the equation derived by Levy, '
~(s) =n, but the difference in the resulting spec-
trum appears only from cps order.

Finally we mention that the wave Eq. (7) can be
derived from the relativistic two-body equation
with the potential (3),

2[&-(p'+m') ]C(p)=fV(p, p')4(p')d'p'

A differs from n because of the inclusion of the
transverse photon exchange as is clearly seen
in (3) and because of the kinematical factor men-
tioned above. Corresponding to (6), the scattered
wave behaves asymptotically like r ' exp[ipr+io.
x(m/2p) ln(2p r)] in the nonrelativistic case. Then,
replacing o by A, our Eq. (7) gives as the asymp-
totic scattered wave

r 'exp[iPr+iimy(s) ln(2Pr)]. (9)

This factor multiplies the angular function, and
therefore any partial wave behaves asymptotically
in the same way. Now from (5), iimy(s) is itself
a real analytic function of s. Then we can continue
(9) into the positronium region 2mm «s «4m2, where
ilmy(s) has a real positive value and the wave
function behaves like

by a consistent reduction neglecting terms smaller
than 1/r in the asymptotic region.

In summary we have shown that the infrared
phase proportional to lnt gives the asymptotic
radial dependence of the electron-positron scat-
tering, and that by matching it with an approxi-
mate asymptotic radial function of a bound state
we obtain a relation which determines the spectrum.
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3The total cross section including the emission of real

photons with the total maximum energy e has a factor
exp(2mB+2mB), where B comes from the real photon
emission. eB contains a term y(t) ln(m/A, ), while aS
depends on the reference system in which e is defined,
the laboratory system in this case, and hence on the
energy of the system E and has a term -p(t) ln(me/AE).
The factor exp(2'+ 2eB) now gives expf2+t) ln(E/e)],
which Levy discussed.

4Apart from the radial quantum number plus one which
Levy subtracted rather arbitrarily, gs) is defined by

e g 1+x2
4m -(1-x )s

s'(s' -s —ie)

~This was pointed out in reference 2.
8H. A. Bethe and E. Z. Salpeter, Handbook of Phys-

ics (Academic Press, Inc. , New York, 1957), Vol. 35,
p. 204. The positronium spectrum up to e4 order is
given by

0, 2m 11 1 1 1
4n2 64 ~n ls J 2l+ 1 2n3

which is obtained from the Breit potential. Equation (11)
gives only the 11/64n4 term of the fine structure, which
we obtain by neglecting spin-orbit interaction and also
short-range parts of the Breit potential.

filmy(s), as a real analytic function of s, has the
same imaginary part as y(s) defined in reference 4 on
the cut s = f4m2, +~]. However, iImy(s) has an additional
branch cut due to s 2 in (5).
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