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A. Saladin for help with the electrostatic separa-
tors.

The fitting program was written by A. G. Wilson of
the Rutherford Laboratory, National Institute for Re-
search in Nuclear Science, Harwell, England. We are
greatly indebted to Mr. Wilson for his help.

The number rejected for this reason was about 12~/(;

of the number finally accepted as three-pion states.
3This description in terms of / and I is correct only

in the nonrelativistic limit, and so the use of this rep-
resentation in the present experiment where the p meson
has a momentum of 780 MeV/c is an approximation.

The lowest P~ state leading to p production is {0,1),
J=1+. It has been discussed in connection with the (d

spin analysis [M. L. Stevenson, L. W. Alvarez, B. C.
Maglic, and A. H. Rosenfeld, Phys. Rev. 125, 687
{1962)j .

It has been suggested [S. Glashow, Phys. Rev. Let-
ters 7, 469 (1961);J. Bernstein and G. Feinberg, Brook-
haven National Laboratory report BNL 6122, 1962 (un-
published)] that the rate of decay of ~ into ~++n- by an

el.ectromagnetic interaction may be appreciable. The
reaction p+p ~ +7t may proceed from S states only
through the S& channel of isotopic spin 1, and so any
contribution would be added coherently to the direct S&

p +~ amplitude. In this case equality of the rates of
production of p p+p would in general imply some con-
tribution of charged p's from, say, the 'So state unless
the interference in the S& channel was so arranged as
to lead to the equality. The angular distribution of the
charged p decay gives no evidence for charged p pro-
duction from the So state. Simi1arly it is not possible
to exclude P-state contribution completely since inter-
ference between several (L, l) waves may occur in such
a way as to allow the effect observed.

C . Bouchiat and G. Flamand, Nuovo Cimento 23, 13
(1962) .

The relation used is y= l&(q~ +rnid )/2q~ . Formu-
la (5a) is a P-wave effective range approximation [B. Lee
and M. T. Vaughn, Phys. Rev. Letters 4, 578 (1962)].

D. D. Carmony and R. T. Van de Walle, Phys. Rev.
Letters 8, 73 (1962).

The contamination from the pseudo-three-pion events
is included in this background

ASYMPTOTIC PRQPERTIES QF FIELDS AND SPACE-TIMES

Roger Penrose
Department of Mathematics, King's College, London, England

{Received 14 December 1962)

This note outlines a new technique for studying
asymptotic questions in (special or) general rela-
tivity whereby several new results are obtained.
The questions dealt with here are the following:
(I) a geometrical definition of asymptotic flatness,
(2) covariant definitions of incoming and outgoing
gravitational (and other) radiation fields, (3) sim-
ple deduction of detailed asymptotic behavior of
the Riemann tensor (and other fields) —the "peel-
ing off" property, ' ' (4) definitions of total energy-
momentum and its loss by radiation, with conser-
vation laws, (6) unification of finite and asymptot-
ic versions of the characteristic initial value prob-
lem, ' ' and (6) geometrical derivation of the Bondi-
Metzner -Sachs asymptotic symmetry group. '~ '~

A longer term aim of this approach is for a covari-
ant 8-matrix theory incorporating gravitation.

The basic idea is as follows. Asymptotic ques-
tions are those relating to the "neighborhood of
infinity. " From the point of view of the metric
structure of space-time, however, there is no
such thing as a point at infinity, since such a point
would be an infinite distance from its neighbors.
But if we think only in terms of conformal struc-
ture of space-time (only ratios of neighboring in-

finitesimal distances are to have significance),
then infinity can be treated as though it were sim-
ply an ordinary three-dimensional boundary 6 to
a "finite" four-dimensional conformal region 5K.
In fact, we may envisage a new "unphysical" met-
ric g assigned (but perhaps only locally) to
space-time, which is conformal to the original
physical metric g» with

= 02g
PV PV

and according to which "infinity is now finite and
in most places regular. The boundary 8 of 5R is
given by Q =0, with Q.

& WO. ("Infinity is given
finite coordinate values, so g&„becomes infinite
there. )

All covariant derivatives used here will be car-
ried out according to the unphysical g» metric so
that properties of 8 and its neighborhood in m

may be studied. Any such property which is con-
formally invariant will then be a physically mean-
ingful asymptotic property in the original space-
time 3R. The basic reason for success with this
approach is the conformal invariance of the zero
rest-mass equations for each spin. '~ ' In particu-
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the sPin, -2 equation K»[pu. r] =0 is Preserved
grith

having the symmetries and trace-free prop-
erties of an empty-space Riemann tensor (or Acyl
tensor).

The physical curvature quantities are obtainable
from the unphysical ones by"

-p. v +2 p v

po' pv

where S&v
= eagp v

-R p v, and C»&& is %'eyl's

tensor, comprising exactly the curvature informa-
tion not contained in S~v.

Assume there is no A. term in Einstein's equa-
tions, and that all fields except gravitation, elec-
tromagnetism, and neutrinos are restricted to a
bounded region of space. Then R =0 in the neigh-
borhood of 6, whence (2) implies A~PA. p

=0 on 5.
Thus, 6 is a null hypersurface. Consider, in par-
ticular, Minkowski space." Here 0 can be sep-
arated into five distinguishable disjoint parts,
namely, three points I, f', and I+ representing,
respectively, the past, spatial, and future infini-
ties, and two null hypersurfaces 6 and 8+ repre-
senting the past and future null infinities. Each of

and 8+ has the topology of a three-dimensional
cylinder (S xE'), bounded by I and I, and I and
I+, respectively, at its "past' and "future" (see
Fig. 1). Furthermore, any null geodesic in gR,

FIG. 1. Conformal structure of infinity.

not on 8, originates at a point of 8 and terminates
on g+. An examination of Schwarzschild's solution
and of the more general radiative metrics'&'& ' sug-
gests as a suitable global definition of asymptotic
flatness' for 9R, the fact that SK exists, with the
structure as defined above, which is regular every-
where (say C') up to and including its boundary s
except at I, 1', and I+.

Many metrics are consistent with a given such
conformal structure for BR, and a choice for which
Q.

&
= -n with n nI" =0 is always locally possible.

For simplicity, such a choice will be made here
together with a physically reasonable (but probably
unnecessary) assumption that R&„=O(&') in the
neighborhood of 0+ (say). Then (2) implies 0;P;q
=0 on 8 , whence the shear and divergence'~' of
8+ vanish, this vanishing of shear being a confor-
mal. ly invariant property. Differentiating, O.&.v.&

P" P' "~P~~~P~& "P~~(P &)' P~ ""' P~~P"
=0 on 5+, whence Ricci identities give C»&zn&
=0, C»&~~~=0 on 5+. This and the topology of
8 imply C»&&=0 on S. Hence the gravitational.
spin-2 field K»po [see (1), (3)] can be defined
continuously throughout BR by QK»&& = C»&& with

-K»&~nz = C»&z.z on 8. Completing a null tetrad
with m& and m~ complex, l& real satisfying m&m~
=lp, lP =ll my=nl mP =1-l/ nP =1+my, mP =0, we

can define the outgoing gravitational radiation field
as the complex tetrad component' +, =Kg vpa+~
xmvnpm~ on 0+. This is uniquely determined,
except for scaling, by the conformal geometry of
SR. The incoming field is defined similarly on 6

(The electromagnetic radiation field is F»num~;
the neutrino radiation field is also simply defined. }

I.et l be a null geodesic meeting 5+ at P. Then,
in the neighborhood of P, g» may be chosen so
that -0 and r=A ' are affine parameters on l ac-
cording to g» and g», respectively. Choosing
l& tangent to l, and m~ suitabl. y, the "tetrads
(I&, m~, n&), (lP' =r lP', m& =rm~, n& =n~) are
transported parallelly along l according to g»
and g», respectively. It follows at once from
continuity of K»po that O', = O(r ') and that the
remaining complex tetrad components 4; of Kpvpg
(i =0, ~ ~ ~, 3), appropriately ordered, are O(r ' ~)

This is the "peeling off" property of the Riemann
tensor. ' A similar result holds for the electro-
magnetic and neutrino fields.

Further specialize g» so that R = 12 on 5+. Con-
sider any spanning hypersurface 3 which meets 6

in a spherelike region S, containing one point of
each generator of 6+. (This implies S is asymp-
totically null in OR. ) Then the total energy-momen-
tum intercepted by S is (compare references 2, 4,
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and 5)

P(W) =(Bm) "'J{aN —4,)WdS,

where cr is the shear" ' of the null hypersurface
meeting 0 in 8 and whose tangent vector l& serves
to define' m &, 4', and where

is essentially Bondi's "news function. " It is also
the derivative in the l& direction at 5+ of the shear
of 0 = const and it has a conformally invariant in-
terpretation. 5' is a real weighting factor satisfy-
ing 1 @f2 ~ ppgP gpss gJ )Qr ~I )2 and has f(
degrees of freedom (corresponding to different
possible "time axes"), one choice ("energy") being
8'=1. The others are generated by the different
permissible choices of metric g», and with ap-
propriate interpretations, P(W) behaves as a 4-
vector. Taking the difference between P(W) and
the corresponding value for a "later" hypersurface
leads to a conservation law with the definition of
gravitational energy-momentum flux across 8+
as NF (The e.lectromagnetic energy-momentum
flux is III »mI"nv l', and correspondingly for the
neutrino field. )

Initial data for gravitation may be specified on
S, and N specified' ' ' on the part of 8+ "below"
S. Essentially equivalent, however, is to use 44
=N. &@~ on 8+ and, if S is null, to use 40 on S
(and complete the data by giving certain quantities
on S). The exact analogy between 4, on 6+ and

4, on S leads to a unification of the finite' ' and
asymptotic'~'~ ' versions of the characteristic ini-
tial value problem.

The Bondi-Metzner -Sachs" "' asymptotic sym-
metry group for general relativity can be inter-
preted as a group of conformal self-transforma-
tions of the three-dimensional manifold 5+ (or 8 ).
Conformal transformations always preserve finite
angles, but there are also the null angles on 8'+

between tangent vectors of which n& is a linear

combination. Parallel transport establishes an
equivalence relation between null angles which
turns out to be independent of the choice of g».
The required group now consists of the self-trans-
formations of 0+ (or 0 ) which preserve both an-
gles and null angles (and do not reverse time-
sense). If any of I, I', and I+ were nonsingular,
then the inhomogeneous I orentz subgroup could
be singled out, but this is not generally the case."

A full account of these results will be published
elsewhere.
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