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This is the generalization to finite temperatures
of the binding energy. '~'

It is a pleasure to thank Dr. P. %. Anderson
and Professor J. R. Schrieffer for discussions.
We are also grateful to Professor J. Bardeen and
Mr. B. D. Josephson for an educational corre-
spondence, and to Professor R. A. Ferrell and
Professor R. E. Prange for copies of their work
in advance of publication.

Work supported in part by the U. S. Office of Naval
Research and by the Advanced Research Projects Agency.

~National Science Foundation Predoctoral Fellow.
'B. D. Josephson, Phys. Letters 1, 251 (1962).
2The probable observation of the dc effect has been

recently reported by P. %. Anderson and J. M. Row-

ell, Phys. Rev. Letters 10, 230 (1963).
3J. Bardeen, Phys. Rev. Letters 6, 57 (1961);9, 147

{1962).
4M. H. Cohen, L. M. Falicov, and J. C. Phillips,

Phys. Rev. Letters 8, 316 (1962); Proceedings of the
Eighth International Conference on Low- Temperature
Physics, London, 1962 (Butterworths Scientific Publica-
tions, Ltd. , London, 1962), p. 163.

SR. E. Prange (to be published).
~R. A. Ferrell and R. E. Prange (to be published).
~L. P. Gor'kov, Zh. Eksperim. i Teor. Fix. 34, 735

(1958) ttranslation: Soviet Phys. —JETP 7, 505 (1958)].
P. C. Martin and J. Schwinger, Phys. Rev. 115,

1342 (1959).
SB. D. Josephson~ gave the equivalent voltage as 27)6,

but has independently arrived at the correct value quoted
in the text (private communication).

~oB. Muhlschlegel, Z. Physik 155, 313 (1959).

MAGNETIC SCATTERING OF NEUTRONS BY NONCOLLINEAR SPIN DENSITIES*

M. Blume
Physics Department, Brookhaven National Laboratory, Upton, New York

(Received 1 May 1963)

In the Heitler-London model of a ferromagnet,
one associates with each magnetic ion a spin den-
sity which points in the direction of the over-all
magnetization. This spin density points in the
same direction in all parts of the ion. It is en-
tirely possible, however, for a spin density in a
ferromagnet to be such that the integral of the
density over a unit cell points in the direction of
the net magnetization, while the density in differ-
ent regions of the cell is not collinear with the net
magnetization. Such a density might occur in an
anisotropic metallic ferromagnet, such as hexag-
onal cobalt, or in an antiferromagnetic or spiral
spin structure. In addition, Overhauser's spin-
density-wave' theory of metallic magnetism can
lead to a density of this form.

It is the purpose of this Letter to point out that
it is possible, using neutron scattering techniques,
to distinguish noncollinear spin densities from the
common variety, and to indicate the simple gener-
alizations of the theory of neutron scattering which
are necessary to account for these phenomena.
For clarity, we will consider a ferromagnet with
one atom per unit cell, but the expressions are
easily generalized to more complicated spin struc-
tures. We will also consider magnetization den-
sities which arise predominantly from electronic
spins, so that orbital scattering can be neglected.
To a first approximation the inclusion of orbital
effects will not change our results, but taking full

account of orbital moments and anisotropic orbital
scattering would complicate the discussion un-
necessarily. ' Accordingly, we may fix our atten-
tion on ferromagnetic cobalt or, with a slight
generalization, on antiferromagnetic chromium.
The results of the theory may be summarized
most easily by pointing out that all of the usual
formulas for magnetic scattering' are still valid
on introduction of a noncollinear density, provided
that the unit vector which defines the direction of
the magnetization is in the new expressions re-
placed by a unit vector whose direction varies as
a function of the scattering vector K.

To derive these results we consider first the
cross section for elastic magnetic scattering of
an unpolarized beam of slow neutrons'.
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Here y = -1.91 is the gyromagnetic ratio of the
neutron, and m, ri, and s are, respectively, the
mass, position, and spin of the ith electron in
the solid. The summation is over all electrons
in the solid, and the matrix element is taken in
the ground state Iq) of the ferromagnet K=k-k'.
is the difference between the initial and final wave
vector of the neutron, and K is a unit vector in
the direction of K. Writing out the matrix element
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in full, we have
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Here 4 q is the wave function of the solid in the
ferromagnetic ground state. The summation is
over the values +'; for the spin coordinate of each
of the v electrons in the solid, and the integrations
are over the volume V of the entire crystal for
each of the v electrons' osition coordinates. In
going from the firs

has been made of the antisymmetry of the wave
function 4 q. We may write (2) more simply as

(qig. exp(iK r )s I.q)=.f exp(iK r )p(r )dr, (3)
2 i i

(4)

p
t to the second integral, use where the sPin density P(r, ) is given by the usual

quantum mechanical definition,

p(r, )=v Q "fdr2, "4r 4 (r g, ",r o )s 4 (r &x, , r"o ).
1 v

Note that in this expression the integration over
r, is omitted. In the case of a simple ferromagnet,
p(r) will have the periodicity of the lattice: p(r +n)
=j(r), where n is a lattice translation. We may
accordingly write (3) as

(q!g, exp(iK r.)s. iq) =~e f e P(r)dr, (5)
2 i i n 0

where the integration is now over the volume V0
of the unit cell. In general, p(r) will vary in both
magnitude and direction as a function of position
in the unit cell. If p(r) is collinear, i.e. , if it
consists of a constant vector times a scalar func-
tion of position, we have again the simple situation
on the basis of which the standard neutron diffrac-
tion formulas have been derived. To see the
changes brought about by a more general density,
we consider the integral in (5) and write

f e p(r)dr =Sf)(K)f(K), (5)
0

where ri(K) is a unit vector in the direction of the
integral. The additional condition f(0) = I then de-
fines S. For K=O, the integral becomes

p r dr=St 0,

showing that S is the magnitude of the spin in the
unit cell and q(0) is the direction of the magnetiza-
tion. We may also interpret f(K) as the form fac-
tor of the spin density in the unit cell. If p(r) is

collinear, then ri(K) = ri(0), and the standard re-
sults follow. In the general case, q(K) need not
point in the direction of the magnetization. Phys-
ically this is because a neutron scattering experi-
ment looks at the Fourier transform of the spin
density. For forward scattering (K = 0), one ob-
serves the total magnetization, i.e. , the integral
of the spin density over the unit cell. For scatter-
ing with nonzero K, one weights different parts of
the unit cell with the factor e'~ r, so that, if the
density points in different directions in different
parts of the cell, a magnetization pointing in an-
other direction is observed.

Collecting (5), (5), and (3), we have

(qig. exp(iK r, )s. iq)=Q e Sf(K)q(K),

and

where q(K) =Kx[q(K)xK]. This is the same as
the usual formula except for the fact that f)(K) need
no longer point in the direction q(0) of the magneti-
zation. The experimental determination of these
phenomena would be accomplished most easily
using polarized neutron techniques. The cross
section for elastic scattering of a polarized beam
by a ferromagnet is

2
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where a is the nuclear scattering length and P is
the polarization vector of the neutron beam. On

substituting the above expression for the electronic
matrix element, we obtain

2

21 2 ' f(K) 'q'(K)
(2NC

The polarization-dependent term here affords
a method of determining the direction of q(K), for
the cross section depends on the angle between P
and q(K). If the cross section is measured for
two different reflections as a function of the direc-
tion of P, the variation in the direction of q(K) due
to a noncollinear density can be detected. It is
also possible to use the analysis of the direction
of polarization of the final beam to detect this ef-
fect. The derivation of this is similar to the above
and will not be given here.

In addition to being of inherent experimental
and theoretical interest, noncollinear spin densi-
ties can greatly complicate the interpretation of
neutron form-factor measurements and spin-struc-
ture determinations. An examination of Eq. (8)
shows the sort of difficulties which may arise.
Ordinarily one interprets the change in intensity
of the scattered beam as a function of K to be due
to the variation in the form factor. If q(K) changes
direction, however, as a function of K, the factor

q'(K) will also contribute to the variation in inten-
sity. This will, accordingly, lead to difficulty in
accurate determination of form factors, for the
separation of these two variations is not possible
unless the change of direction of q(K) has been
measured in a polarized beam experiment. Simi-
lar difficulties occur in spin-structure experi-
ments. Here the absence of certain reflections
otherwise expected to occur is taken to indicate
q'=0. According to our discussion, however, the
condition q2 = 0 determines the direction of 2}(K),
which is not necessarily that of the direction of
magnetization f}(0). One may be led by this to in-
correct conclusions about the direction of mag-
netization if the presence of noncollinear densities
is unsuspected.
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%e report a preliminary calculation of the cross
section for electron impact excitation of helium to
the doubly excited (2p)' 2Pg state, for which the
scattered beam has a maximum of intensity at
right angles to the incident beam. Similar calcu-
lations for several other states have been per-
formed and will be reported elsewhere. The case
considered here is of special interest because it
involves the lowest lying, doubly excited state
which is stable to autoionization. '" Thus, while
most doubly excited (or "anomalous" ) states de-
cay by electron ejection within 10 "-10 "second,
helium in the (2P)' 2P& state and certain other
states can survive for as long as 10 -10 "sec-

ond before it ultimately decays by dipole radiation.
It is therefore possible for these highly excited
atoms to live long enough to participate in chemi-
cal reactions analogous to the inverse dissocia-
tive-recombination process.

The (2P)' 2P& state is the lowest with this sym-
metry. By representing the angular portions of
the wave functions as products of spherical har-
monics for the individual electrons, trial functions
can be constructed which are orthogonal to all
lower states, even the infinite number of 1snp
'P~ states. Thus the variation theorem can be
applied directly without reference to lower lying
states. Therefore energy integrals calculated
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