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In a recent note, Josephson' has predicted some
new effects in the tunneling characteristics of a
system of two superconductors separated by an
oxide layer. The effects are an oscillating super-
current of frequency 2eV/k (where V is the applied
voltage), and a possible dc supercurrent at zero
voltage. ' In this Letter we reproduce and some-
what generalize Josephson's calculation by another
method, the method of the thermodynamic Green's
functions, which brings out the a,ssumptions that
are made and is sufficiently general to apply to
superconductors with strong electron-phonon cou-
pling. In addition, we show that in the model of
Bardeen, Cooper, and Schrieffer a simple pre-
diction for the temperature dependence of the dc
supercurrent follows from the theory. This pre-
diction should, of course, be experimentally
tested.

From our point of view, Josephson's effects
occur because the amplitudes for condensed pair
formation and disruption (Gor'kov's p functions),
which are nonlocally dependent on the energy gap,
may overlap in the oxide layer even though the
gap is essentially zero there. A key assumption
in Josephson's calculation is that the p functions
in the representation of the single-particle states
of the semi-infinite metals on either side have the
same form as those for the bulk superconductor
in the representation of plane waves. A similar
assumption is customarily made for quasi-particle
tunneling and is experimentally verified. The
approximation for the g functions seems reason-
able to us, provided that the barrier is consider-
ably thinner than the superconducting coherence
length.

Our starting point is the Hamiltonian'~

where HI and H~ are the many-body Hamiltonians
for the superconductors on the left and right and
V is the term that couples them, namely,

V = Q (T c +d + T *d +c ). (2)
kq kn qn kq qn ke

Here ck and dq~ are annihilation operators for
single-particle states on the left and right, a is
the spin index, and the explicit form of the matrix
elements Z'k between states of approximately

equal energy is'

T =hjf(k/2 )[q *( )&x ( )/s
kq k q

-)( ( )sq '( )/& ]

- (e/mc)A y *y } dxdy.
z k qz=zo (3)

Above yk(x) and y&(x) are the wave functions for
the states with quantum numbers k and q, the z
axis is normal to the barrier, z, lies in the bar-
rier, and A is the self-consistent vector potential.
The use of the Hamiltonian (l) in first-order per-
turbation-theory calculations has been recently
justified by Prange. '

The number operator for electrons on the left
is given by

f kn k

As in the treatment of reference 4, we use the
equation of motion for this operator to compute
the rate of change of its expectation value:

j(N )=([N, H])=2iImg T (c +d ). (5)
k kq km qn

The expectation value in (5) is in the grand en-
semble describing the two superconductors with,
however, different chemical potentials on the two
sides. In the first order of perturbation theory,
one has

(c +d ) = ff dt( [c +-(t)d (t), V(&)]), (5)

where the operators on the right are in the inter-
action representation. The usual tunneling cur-
rent is obtained by making a Hartree-Fock factori-
zation of the contribution to (5) of the second term
of (2). Josephson's effects come from the first
term of (2) and reflect the macroscopic occupation
of ground-pair states in both superconductors.
For this term one has to calculate the expectation
value of the operator ck+dqcki+dqi. This operator
has no diagonal matrix element between states with
definite numbers of particles on the left and right.
However, in the limit of zero voltage there is a
highly degenerate set of states with the same
total number of electrons N but differing numbers
of ground-state pairs on the left and right, and a
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diagonal matrix element exists between phase-co-
herent superpositions of these states. '&' For fi-
nite voltages, Josephson apparently assumes that
the same coherent superposition of states can be
achieved during the tunneling process, but ques-
tions of stability appear to us to remain open in
this case. The coherent superpositions of states
may be chosen to have the property'

tion Q and the Gor'kov amplitudes I' and +. Antic-
ipating that the magnetic field will be confined to
the barrier region, we may assume these quanti-
ties to be diagonal in the representation of Eq. (3).
They are defined according to

G (k;t, t ) =-iT(c (t)c '(t )},

F (k;t,t') = T(P +c (t)c (t')},

P P 11V, c].}=e )N, o(),l r F (k;t, t )=T(P c „(t)c (t )&, (6)

where P~ and P~+ annihilate and create ground-
state pairs. The tunneling rate may now be writ-
ten in terms of the single-particle Green's func-

where T is Kick's time-ordering operator. On
substituting (2) in (5), making the appropriate
factorizations, and doing the spin sums as in Gor'-
kov's first paper, ' one finds

(jr ) =-2Re Q f dF{e T T [F (k; t, F)F (q;P t) -F (k; t, RF (q'I t)]
kqn

+T T ~[G (k;t t)G)(q t-t-) —G (k I t')G (q; t--F)]}.
kq kq

The factors that occur in (9) are not time-ordered
products; the superscripts indicate the order of
the field operators. To exhibit the structure of
(9), it is convenient to introduce the spectral func-
tions' for G, g, and P. For the single-particle
Green's function, the spectral function A is given
by the relation

G (q, (u) = +iA(q, (u)f +(~), (10

where

f*((u) ={exp[+p((() —p)]+ I] ' with

F(q;t, t') =e C(q;t-t'),2i pt—

F and F, we may write
-2s p, tF(q;t, t)=e " C(q;t-t),

with

4 (q, (u) =+iB(q, (u)f+((u)

(12)

(13)

]i being (kT) ' and i]. the chemical potential. For V(q, (u) =+i B(q, (-u)f+((u). (IS)
Introducing these spectral forms, one obtains

()) ) =2(mg f, [f( (w) f(~')]-
kqo.

2A(k, (u)A(q, (d') i a{ , , B(k, (u)B(q, (u')
A'q (d - (d +l'g kq -k-q l r &u-u'-iq (16)

If the metals on both sides are in the normal state
or if only one is superconducting, the second term
in the square bracket is not present. In Eq. (16)
no assumption about the strength of the electron-
phonon interaction has been made. In particular,
for strongly coupled superconductors the spectral
functions will not be sharply peaked. The usual
quasi-particle tunneling current'~' is obtained by
using for the normal metal the bulk form

A(k, (u) =2vs(~ - e —p),

ing to the Bardeen-Cooper-Schrieffer theory

A(k, ~) =~[(i+e /S )6(~-B„-q)

+ (1 —e /E ) 5((u +E„-p) ], (i6)

wnere Ek = (ak'+ t], ') ', and C), is the gap.
Making the same bulk approximation for the

anomalous terms, one has

and for the superconductor the form correspond- B(q, (u) = -(xi~/B )[6((d - g - E ) - 6(~ - (u+B ) ], (19)
q q
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FIG. 1. Reduced dc Josephson current versus reduced temperature. T~~ is the smaller of the two critical tem-
peratures. The dashed line applies to the case of equal energy gaps; the temperature dependence reduces to that of
the gap alone. The solid line corresponds to &i(0)/&2(0) = 0.5, and applies approximately to a Sn-Pb sandwich. The
BCS temperature dependence of the gap is assumed in both cases. Barring other complications from the strong
electron-phonon coupling in lead, such an approximation is good for Al-Pb or Sn-Pb sandwiches since the gap of
lead varies little over the interesting temperature range.

and

B(q, (u} = (a'/a}B(q, (u}. (2o)

With these substitutions, (15) reduces to the form
given by Josephson and shows his effects. In par-
ticular, the zero-voltage current is seen to be

e(N ) =sin(n+n') 4e Q iT T s 'b, i/4E E
l kq -k-q l r qk

kqQ
'

f (@ ) f(E~) f+(E )-f -(&~)

I
q k q k

=-Z sin(o. +a').
S

Above, o. ' is the argument of the quantities whose
absolute value is indicated. Note that (21) is ex-
plicitly gauge invariant. The relative phase (o.
+ a') is strongly dependent on the transverse di-
mensions of the junction' and on the external mag-
netic field. '~2

Assuming specular transmission, integrating
over k, k, q, q, and neglecting the energy de-
pendence of TI q (as is experimentally justified),
one finds

eTn, ,d„dc, de, 1 2E,f (E,)

The last two terms give no contribution to the
principal value integral and the first may be eval-
uated in terms of the complete elliptic integral of
the first kind. Then, noting that the normal state
resistance Rn is given by 2mb/e'T, one finds the
simple formula

J =8 'z|(T)K([1-z, '(T)/g, '(T)p'g, (23)

where b, , (in eV) is the smaller of the two energy
gaps. Since K(0) =';w, one has the result that when
6 is the same on both sides, J~ is the current that
flows in the normal state at an applied voltage of

The equivalent voltage for differing super-
conductors may be easily calculated from (23).
J~ is an upper limit for the maximum supercurrent.
Equation (23) is plotted in reduced form in Fig. 1,
using the BCS temperature dependence of the gap. "
The solid line applies approximately to a tin-
lead sandwich.

Finally, it may be worth mentioning that the
electronic contribution to the free energy from
the overlap of pair functions may be easily calcu-
lated from the well-known formula

~=f (dh/z)(zV), (24)

where i is an explicit coupling constant. In the
first order of perturbation theory, one obtains

(22) AF =-(k/2e)J cos(o. +a').
S

(25)
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This is the generalization to finite temperatures
of the binding energy. '~'
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In the Heitler-London model of a ferromagnet,
one associates with each magnetic ion a spin den-
sity which points in the direction of the over-all
magnetization. This spin density points in the
same direction in all parts of the ion. It is en-
tirely possible, however, for a spin density in a
ferromagnet to be such that the integral of the
density over a unit cell points in the direction of
the net magnetization, while the density in differ-
ent regions of the cell is not collinear with the net
magnetization. Such a density might occur in an
anisotropic metallic ferromagnet, such as hexag-
onal cobalt, or in an antiferromagnetic or spiral
spin structure. In addition, Overhauser's spin-
density-wave' theory of metallic magnetism can
lead to a density of this form.

It is the purpose of this Letter to point out that
it is possible, using neutron scattering techniques,
to distinguish noncollinear spin densities from the
common variety, and to indicate the simple gener-
alizations of the theory of neutron scattering which
are necessary to account for these phenomena.
For clarity, we will consider a ferromagnet with
one atom per unit cell, but the expressions are
easily generalized to more complicated spin struc-
tures. We will also consider magnetization den-
sities which arise predominantly from electronic
spins, so that orbital scattering can be neglected.
To a first approximation the inclusion of orbital
effects will not change our results, but taking full

account of orbital moments and anisotropic orbital
scattering would complicate the discussion un-
necessarily. ' Accordingly, we may fix our atten-
tion on ferromagnetic cobalt or, with a slight
generalization, on antiferromagnetic chromium.
The results of the theory may be summarized
most easily by pointing out that all of the usual
formulas for magnetic scattering' are still valid
on introduction of a noncollinear density, provided
that the unit vector which defines the direction of
the magnetization is in the new expressions re-
placed by a unit vector whose direction varies as
a function of the scattering vector K.

To derive these results we consider first the
cross section for elastic magnetic scattering of
an unpolarized beam of slow neutrons'.

I'

, ~
l(q I+exp(iK r.)Kx(s. xK) I q) I'. (l)dQ' (mc']; i i

Here y = -1.91 is the gyromagnetic ratio of the
neutron, and m, ri, and s are, respectively, the
mass, position, and spin of the ith electron in
the solid. The summation is over all electrons
in the solid, and the matrix element is taken in
the ground state Iq) of the ferromagnet K=k-k'.
is the difference between the initial and final wave
vector of the neutron, and K is a unit vector in
the direction of K. Writing out the matrix element
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