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Recently one of us (L.H.) has obtained an ex-
pression in closed form for the nonrelativistic
Coulomb Green’s function.! Knowing the form of
this expression, we wish to outline here a simple
derivation of the Green’s function and summa-
rize some further results.

The Green’s function is the solution G(T,, Ty, w)
of the differential equation

{92+ (2kV) /75 + R2}G(Ty, Ty, w) = 83(T, - T,);
v =(ka,)™t; =4nh®/mZe?;, k=(2mw/K)'/?,
Im(k) > 0; (1)

which satisfies the following boundary conditions
at the origin and at infinity:

7,2G(T,, Ty, w) = 0

- - - - } as V2'°0’
7,121, V,G(r,, Ty, w) = 0

- .
¥oG(ry, Iy, w) =

o }for Vo= .
r,eV,G(ry, 1y, w) =0

(2

Here hw is a complex number not in the eigen-
value spectrum of the Hamiltonian of the system.
The Green’s function as defined by (1) and (2) is
unique. 2

The retarded (advanced) “physical” Green’s
function, defined for real Zw, is obtained from
G(t,, T, w) by taking the limit as #w approaches
the real axis from above (below). For %w >0
the physical Green’s functions so obtained have
an oscillatory behavior as »,—~ >, the retarded
Green’s function consisting of only outgoing
spherical waves and the advanced Green’s func-
tion consisting of only incoming spherical waves.
For #iw <0 the retarded and advanced Green’s
functions coincide, and both agree with the “gen-
eral” Green’s function as defined by (1) and (2).
These 7w values are “nonpropagating” in the
sense that the Green’s functions decay exponen-
tially as 7, —~ .

Rotational invariance and uniqueness require
that G(r,, T, w) depend on T, and T, only in the
forms V15 V2 and lr2 - r,l It is natural to factor
out Ira-rll " from G. If we let F(ry, ry, 17,-1y1)
=-4r| r2 - rll G, then F satisfies the homogeneous
equation

“(T, - Ty)e Vy + 200 /7y + B}
XF(sz”nl;z';x():os (3)

{v,2-2IT,- 1,

together with the normalization condition F(r,=T,)
=1. Now the striking feature of the solution® for
G is that F(r,,7,,|T,- 1;|) is a function of only

the two variables x =, +7, + IT, - ;11 and y=7, +7,
-IT,-1,| and is of the form

Flrgyry, IT,-Ty1) = (8/0x - 8/0y)f, (0)fp(y).  (4)

In view of this result, we write the dependence
on T, in terms of the variables 0=7, +7, and p
=|T,-T,l, where in principle F could still have
a further dependence on 7;:

32 e 2+o®-207, 02 -0%+20r, 98
802 plo-») opdo p%(o-r,) oo
2ky
+ p— +k2% F(0,p, ) =0. (5)

The significance of the partial derivatives in
(4) now becomes apparent: If we let F(o,p,r,)
=(8/8p)D(a, p,7;), then the term in (5) linear in
the differential operators can be eliminated from
the equation. We find (8/8p)MD(o, p,7,) =0, where

82 9% p?+o®-207, B2 2kv

M=W+3-(;£+ plo-7) 8p80+0-r1

2L, (6)

Thus MD is a function of o and »; only. However,
note that D is not determined uniquely: If D’ is
an acceptable solution, then so is D =D’ - Dy(a, r,),
where D, is an arbitrary function of o and »;. We
may choose D, such that MD=0.

The significance of the transformation to the
variables x and y now also becomes apparent:
When M is expressed in terms of these variables,
no mixed derivatives occur. So far we have made
no use of the fact that we are dealing with the pure
Coulomb potential V(r,) =-Ze?/4nr, rather than a
general potential V(r,). Now the special feature
of the pure Coulomb case is that M is separable
inx and y. We may rewrite the equation MD =0
in the form

{(? - 2x7)Ox) - (»% - 2y»,)0(9)}D(x, y,7,) =0,

92 B2 Ry
o< (£ 2. 2).
@=(+ 2 @
Any solution of the equation O(z)f(z) =0 can be
written as a linear combination of the two Whit-
taker functions W;,,. 1/2( -ikz) and o, /2( -ikz).8
A solution for D is hence D = constantx[fl(x)fz(y)]
where f, and f, are Whittaker functions. The
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choice of Whittaker functions follows from the K. T )_{ of@,a), 2.3 +L"£}
boundary conditions (2) and the choice of con- T2y Ty W =Y\ 2 V2 Yo VetTp
stant from the normalization requirement
F(r,=1,)=1. We finally have for the Green’s xG (F., F.,w), (11a)
function 121
. . M(1-iv) 1( 8 _ =G(F,F,w){yo(ﬂ+i>
- (== - 12
OlFw Fo ) =581 5 (o 35) g2 240 U e T
. - = mc
: -ik i _}
sz.v;l/z( iky), (8) iV (11b)

in agreement with the result previously obtained.!
Although some integral representations are

known for G,'»* we are not aware that the result

(8) has previously been obtained. Meixner? has

given the expression for the Green’s function

for the special case Fl =0. His result agrees

with that obtained from (8):

G(r,, 0, w)=-(47172)'1f(1 -iu)Wl.V_ ) /2(-2ikrz). (9)

’

Similar results may be obtained for the Klein-
Gordon and Dirac equations. For the Klein-
Gordon equation, the Green’s function should
satisfy

{V22 +2ku/r2 +¢12/r2z +k2}GKG(Fz, Fl’ w) = 6"’(-1:2 - Fl);
k=[(w/c)? - (mc/n)?}'3,
(10)

a=Ze?/4nhc; v=aw/ck;

Im(k) >0.

If we neglect the (a/7,)? term, this equation
agrees with the equation of the nonrelativistic
Green’s function, excepting only that the mean-
ings of the parameters # and v are different.
Consequently, we obtain the result that the
Green’s function for the Klein-Gordon equation
without the potential squared term is given by
the expression (8) with # and v defined as in (10).
For the special case that r, =0, we obtain (9)
again but with » and v defined as in (10), a re-
sult obtained by Martin and Glauber.®

Now it has been shown' that this neglect of the
potential squared term is precisely equivalent
to neglecting terms of order a2/(l +3)? in com-
parison to unity in the /th partial wave of the
partial-wave expansion of the exact Klein-Gor-
don Green’s function satisfying (10)—i.e., this
neglect of the potential squared term is strictly
analogous to the approximation introduced by
Furry® in connection with the Dirac-Coulomb
continuum states.

The Coulomb Green’s function K(T,, Iy, w) for
the Dirac equation has also been obtained in
closed form in the “Furry” approximation.®
This Green’s function can be expressed in the
form
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where GI is the Green’s function of the iterated
Dirac equation

, 1 8
V-Gt

- >

2ia ® m%*® a® . a-r

Pyl ?+za7}q)=0. (12)
The expression for G; in the “Furry” approxi-
mation, a?/(J+3)2«1, is found to be:

GI(Fz, Fl, w) ={1 - (ic /2w)a- (V, + V,)}

X Go(Ty, Ty, ), (13)
where G,(T,, T, w) denotes the approximate Klein-
Gordon Green’s function discussed above. This
result is in agreement except for terms of order
a® with the exact result obtained by Martin and
Glauber” for the special case r, =0.

The physical Green’s function G(r,, I,, w) re-
garded as a function of Fz can be interpreted as
the Schrodinger wave function corresponding to
a source point or sink point located at ;, of
particles of frequency w. When %w lies in the
continuous spectrum, we obtain the Coulomb
wave functions with modified plane-wave be-
havior at large distances by taking the source
point (or sink point) Fl infinitely remote from
the origin.®? The Furry or Sommerfeld-Maue
wave function can be derived by applying this
procedure to our approximate Dirac Green’s
function as obtained from (11b).
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