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r,"'G(r„r„(u)—0

r,"'r, v,G(r„r„~)-0
as r, -0,

r,G(r„r„(u) —0
for r2- ~.

r2 V, G(r~, r„~)-0 (2)

Here Sw is a complex number not in the eigen-
value spectrum of the Hamiltonian of the system.
The Green's function as defined by (1) and (2) is
unique.

The retarded (advanced) "physical" Green's
function, defined for real h~, is obtained from
G(r„r„w) by taking the limit as 8~ approaches
the real axis from above (below). For 8&v &0
the physical Green's functions so obtained have
an oscillatory behavior as r2- ~, the retarded
Green's function consisting of only outgoing
spherical waves and the advanced Green's func-
tiop consisting of only incoming spherical waves.
For k~ &0 the retarded and advanced Green's
functions coincide, and both agree with the "gen-
eral" Green's function as defined by (1) and (2).
These h~ values are "nonpropagating" in the
sense that the Green's functions decay exponen-
tially as r, —~.

Rotational invariance and uniqueness require
that G(r„r„&u) depend on r~ and r2 only in the

l r2 rg j . It is natural to factor
out lr, -r&l from G. If we let F(r„v„ lr~- r, l)
= -4~ ) r, —r, ( G, then F satisfies the homogeneous
equation

2 lr - r~l 2(rm- r~) ~ V2+2kv/rm+k )
x F(r2, r~, I r, —r, l ) = 0,

Recently one of us (L.H. ) has obtained an ex-
pression in closed form for the nonrelativistic
Coulomb Green's function. ~ Knowing the form of
this expression, we wish to outline here a simple
derivation of the Green's function and summa-
rize some further results.

The Green's function is the solution G(rm, r~, v)
of the differential equation

(V, + (2kv)/r2+k'}G(rm, r„&u) = 6~(rz —r~);

v=(ka, ) '; a, =4wh'/mZez' k =(2m(u/h)~'~

Im(k) &0;

which satisfies the following boundary conditions
at the origin and at infinity:

together with the norma. lization condition F(rz= r~)
=1. Now the striking feature of the solution' for
G is that F(r2, r„ l re- r, l) is a function of only
the two variables x =- r, + r, + ) r, - r, ) and y =—~, + ~,
-

I r2- r~l and is of the form

F(rl, r~, l r2 —r~l) cc (a/ax —a/ay)f, (x)f,(y). (4)

In view of this result, we write the dependence
on r~ in terms of the variables v-=r~+r, and p
=- (r2- r, ), where in principle F could still have
a further dependence on ~,:

8 8 p +0 —2cry ~ p -v +2GY~
2 + + +

ap' av' p(v —r) apav p'(v —r) av

+ +k' F(v, p, v~) =0.2A' v

G —Vg
(5)

Thus MD is a function of v and v, only. However,
note that D is not determined uniquely'. If D' is
an acceptable solution, then so is D =D' —D,(v, r, ),
where D, is an arbitrary function of v and r, . We
may choose Do such that MD =0.

The significance of the transformation to the
variables x and y now also becomes apparent:
When M is expressed in terms of these variables,
no mixed derivatives occur. So far we have made
no use of the fact that we are dealing with the pure
Coulomb potential V(r2) = Ze /4mv-2 rather than a.

general potential V(r~). Now the special feature
of the pure Coulomb case is that M is separable
in x and y. We may rewrite the equation MD =0
in the form

f(x' —2xr, )O(x) —(y'- 2yv, )O(y) jD(x, y, r, ) =0,

kvO(z)=, + —+ —.
c)Z 4 Z

Any solution of the equation O(z)f(z) =0 can be
written as a linear combination of the two Whit-
taker functions Wiv 1/2( ikz) and, '&Riv I/2(-ikz).
A solution for D is hence D =constant x [fz(x)f,(y) j,
where f, and f, are Whittaker functions. The
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The significance of the partial derivatives in

(4) now becomes apparent: If we let F(v, p, r, )
= (a/ap)D(v, p, r, ), then the term in (5) linear in
the differential operators can be eliminated from
the equation. We find (a/ap)MD(v, p, r, ) =0, where

a' a' p'+ v' —2vr, a' 2kv, (6)2+ + + +k
apl ave p(v - r~) apav v —v,
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choice of Whittaker functions followe from the
boundary conditions (2) and the choice of con-
stant from the normalization requirement
F(r, = r, ) =1. We finally have for the Green's
function

l(1-iv) 1 8 sG(r„r„u) = — - - —.„-—+ —W, j (-ikx)

o g a . mcK(r„r„~)= y' —+ —+iy V, +

xG (r, r, ~),I 2' (11a)

xmt. , (-iky),
2v~ 1i2 (8) mc

+ (11b)

Im(k) )0. (10)

If we neglect the (a/r, )' term, this equation
agrees with the equation of the nonrelativistic
Green's function, excepting only that the mean-
ings of the parameters 0 and v are different.
Consequently, we obtain the result that the
Green's function for the Klein-Gordon equation
without the potential squared term is given by
the expression (8) with k and v defined as in (10).
For the special case that r, =0, we obtain (9)
again but with k and v defined as in (10), a re-
sult obtained by Martin and Glauber. '

Now it has been shown' that this neglect of the
potential squared term is precisely equivalent
to neglecting terms of order a'/(I+-,')~ in com-
parison to unity in the 3th partial wave of the
partial-wave expansion of the exact plein-Gor-
don Green's function satisfying (10)—i.e. , this
neglect of the potential squared term is strictly
analogous to the approximation introduced by
Furry' in connection with the Dirac-Coulomb
continuum states.

The Coulomb Green's function K(rm, r|,u) for
the Dirac equation has also been obtained in
closed form in the "Furry" approximation. '
This Green's function can be expressed in the
form

in agreement with the result previously obtained. '
Although some integral representations are

known for G, ~ we are not aware that the result
(8) has previously been obtained. Meixnerm has
given the expression for the Green's function
for the special case r, = 0. His result agrees
with that obtained from (8)'.

G(r2, 0, &u) = (4m' )-I'(1 -iv)W, (-2ikr ). (9)
2vi1 2

Similar results may be obtained for the Klein-
Gordon and Dirac equations. For the Klein-
Gordon equation, the Green's function should
satisfy

fg 2+2kv/x +am/r '+k )G (r, r, ~) =5 (r -r );

a =Ze2/4mSc; v =au jck; k =[(e/c)' —(mc/&) j ',

where G& is the Green's function of the iterated
Dirac equation

1 ~ 2sQ ~ m c Q . D'r
+ ——— + —+ia p=0. (12)c' gt2 cr Bt 8' r' r'

The expression for Gl in the "Furry" approxi-
mation, a'j(J+-,')'«I, is found to be:

GI(r2, r1, cu) =(I —(ic/2(u) a (v, ~+ v', ))

x Gp(1 g r| (d)

where G,(r~, ri, u) denotes the approximate Klein-
Gordon Green's function discussed above. This
result is in agreement except for terms of order
a' with the exact result obtained by Martin and
Glauber' for the special case r~ =0.

The physical Green's function G(r„ri, &u) re-
garded as a function of rm can be interpreted as
the Schrodinger wave function corresponding to
a source point or sink point located at r, of
particles of frequency ~. When hcu lies in the
continuous spectrum, we obtain the Coulomb
wave functions with modified plane-wave be-
havior at large distances by taking the source
point (or sink point) r, infinitely remote from
the origin. '~' The Furry or Sommerfeld-Maue
vrave function can be derived by applying this
procedure to our approximate Dirac Green's
function as obtained from (lib).
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