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The requirements of unitarity and analyticity
seem to impose rather strong constraints on the
growth of scattering amplitude at high energy.
The first significant result in this respect was
that of Froissart' who obtained upper bounds for
the high-energy scattering amplitude from Man-
delstam representation and unitarity. He found
that the scattering amplitude f(s, cosH) (for scalar
particles of equal mass) satisfies the inequalities

if(s, cos8)i &C,s(logs)', for 8 =0 or m, (1)

If(s, cos8) I &C,s~'(logs)~', for 8 x 0 or w, (2)

for very large s, where s and 8 are the square of
the total energy and the scattering angle in the
center-of-mass system. f is normalized here in
a relativistic way, so that

do'

o -—Imf(s, 1), ——If I'.
tot s ' ' dQ s

It was recognized later by one of us' that it is
not necessary to make use of the full analyticity
assumed in the Mandelstam representation to ob-
tain the bounds (1) and (2). It is sufficient to
assume that f(s, cos8) be analytic in an ellipse
Ep in complex cos6 plane, with foci at +1 and - 1
and semimajor axis of length p= 1+u/k' (u a
positive constant, A the center-of-mass momen-
tum), and that f be uniformly bounded in this
ellipse by some power of s. '

We may then ask the following questions:
(i) Is it possible, with the weak assumptions

just mentioned, to improve the bounds (1) and
(2) &

(ii) Will it be possible to improve them if more
analyticity is assumed'p

As to the first question, it is easy to see that
the answer is negative: It is, namely, possible
to find counter examples.

The purpose of this note is to give a partial
answer to the second question. We shall show
that, if f(s, cos8) is analytic and uniformly bound-
ed by a power of s in a domain Ds defined below,
it is, in fact, possible to improve bound (2) and
replace it by

If(s, cos8) I
& C, (logs)~', for 8 e 0 or w. (3)

From this we obtain for the elastic differential
cross section a bound

der (logs)'el
dn ' s

which decreases rapidly as s increases. [In con-
trast (2) gives a bound which increases with s. ]
So far we have not succeeded in improving the
forward-backward bound (1). We do not know
whether this improvement is possible under our
assumptions.

In the following we put cos6I =z.
We assume that f(s, z) is analytic and bounded

by s+ (N is independent of s and z) in a domain
Ds of the z plane [see Fig. 1(a)]. Ds is an inter-
section of a domain containing the ellipse E&
[shown by a dotted curve in Fig. 1(a)] and the z
plane with cuts from -~ to -p and p to ~. The
shape of Ds depends on s. Let us assume, how-
ever, that the distance between the boundaries of
Ds and E& is larger than some positive number
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Making use of the formula'

P (z) =— [z+ (z'- 1)v'cost] dt
ri

and of the generating function of P~'s, together
with their orthogonality properties, we find the
following relations between f and g.

f(s, z)

FIG. 1. The domains D~ and D~ in the complex z
plane.

TT

g[s, z + (z' - I)u' cost ]dt
7T p

2 1/2

1 z + (z 1) g(s, u)du

T!i z (z' 1) ' (I-2uz+u') '

(1Oa)

(lob)

for all values of s (except in the neighborhood of
z = +1 where the distance is at most of the order
of s "'). These conditions are, of course, satis-
fied if one assumes the validity of Mandelstam
representation. However, one must notice that
(i) we do not make use of analyticity with respect
to s; (ii) the domain Ds in z may not be as big
at the cut plane.

We want to derive a bound for f(s, z) for z real,
lzl ~ 1. Inside of the ellipse Ep, we can represent

f(s, z) by a Legendre series

f(s, z) =—Q (2t+ 1)a (s)P (z).
2k' 0

I/t 2 1/2
lim sup la I =p-(p -I)

l

The unitarity condition Ima~ ~
la~ i', or some-

what weaker inequality

la l=1 i=01 2

is more easily applicable to the function g(s, z),
defined by the power series

4s ~ l
g(s, z) =—Q (2t+1)a (s)z

2ki -O I

+' (1-z')f(s, x)dx
g( & ) (I 2 2)v21s ~ ~~

~

~

~ ~
j
z-1

lzl &1. (IOc)

These formulas can be extended to other values
of z by deforming the integration path. One can
then show that g can be analytically continued
into a certain domain Ds (Ds is the union of the
circle izi « I and of the domain (z!z =u! + (u!'- 1)v',
!LCD&j) [see Fig. 1(b)], and that

N'
ig(s, z)i&s (11)

(zCDs; s & s„where s, is independent of z).
We shall now show that, making use of (9), we

can improve the bound (11) on the unit circle Izi
=1. The general technique consists in using
properties of subharmonic functions. However,
we shall use here a particular theorem which is
the following:

Let g(z) be an analytic function defined in a do-
main limited by two arcs of circles C, and C3
which intersect at the points A and B. Let i@(z) I

be less than M, on C„M, on C, . Then the upper
bound of I&p(z) I on an intermediate arc of circle
C„which connects the points A and 9, is less
than M„where

in the circle Cz.'Iz I
& r = p + (p'- I)"'(&I). Namely,

(7) implies that (8) converges in Iz I& 1, and that
~I-'I/( +ti) /( +0)

2 1 3 (12)

2k'
ig(s, z)i«, & )„ for Izi& l. (9)

1 + lzl 2

As s goes to infinity the ellipse F& collapses to
the real segment (-1,+1) as is shown in Fig. 1(a),
whereas Cr converges to a unit circle [see
Fig. 1(b)]. Thus the analyticity domain for
g(s, z) has a finite size for all values of s. This
makes g(s, z) convenient for the study of high-
energy behavior.

Here n and P are the intersecting angles of C] C2
and C„C„respectively.

To prove this, one just has to apply with some
caution the maximum modulus principle to the
function P(z) exp[-ik log[(z -A)/(z —B)]j, where a
is a conveniently chosen constant.

This theorem may be applied to our problem as
follows (see Fig. 2): In the domain Ds we draw
a circle of radius I-e centered at the origin (e
will be adjusted later). It plays the role of C, .
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FIG. 2. Arcs of circles C&, |."2,C3 in the domain D&.

C, cuts the real axis at the same points as Cy

and intersects the unit circle at z =e~~. C, can
be chosen as the largest arc inside Dz. Because
of our assumption on the domain D~ and hence

Ds, the angle»L+P between C, and C, has a finite
minimum m for any» (0&» &1). The angle o. is
given by

tann = » (1 —'; »)/s in' (1 - » ) . (13)

Now, we have M, & 2/»' and M, &s+' from (9) and

(11), respectively. From these bounds of M, and

M, we find that M, of (12) becomes smallest for

» =
I sin8 I/logs. (14)

(1 - r )"'(Isin6 l)v' v (I sin& I)v'

dr C ' dx
(1 )$2»2 (1 y)l/2)-6

Ca.rrying out the integration and inserting (14), we

For this choice of e. , we get

M, & (2/»')e = 2C/»'N '/m

along C, and, in particular, at z = e'~. Obviously,
this is also the maximum of g between C, and C, .

Let us now exploit the above results to obtain
an upper bound of If(s, cos8) I. We shall use
Formula (10b) and integrate along two radii, e '6
-0, 0-e'6. Then we find from (9) and (15) that

finally obtain

If(s, cos&) I
& C'(logs)~'/sin'6, for s & s„(16)

where C' is a constant independent of s and 6.
This inequality implies inequality (3) and has the
further merit of being uniform in 8. The deriva-
tion of (16) exhibits clearly that the distance of
the branch points to cos6 =+) plays no role, al-
though it is essential to derive the forward-back-
ward bound.

Inequality (16) is better than inequality (1) as
long as I cosHI is less than 1- const/s(logs)v'.
In particular, for fixed momentum transfer, it
gives

(f(s, 1- It I/2k') )
~ (C "/It l)s(logs)~',

a result which is implicitly contained in refer-
ence 2.

Finally, let us indicate that if Dq consists of
the whole cut plane, an alternative method may
be used. It consists in studying the upper bound
of the partial-wave amplitude a~ in the complex
/ plane for Rel &N". From this one can derive
a bound very close to the bound (3) by making use
of the Watson-Sommerfeld transformation. In
this manner one can also understand the deep
reason why (2) should be replaced by (3). This
is because of the fact that for l big enough, but
much smaller than s~'logs, a~ is a very slowly
varying function of /. Details will be published
elsewhere.
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