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70 and 200 events, respectively, to separate
the cases p&&& =~1 by one standard deviation.
With 10' 1-BeV/c pions per second in the in-
cident beam and a 1-atm He4 discharge chamber
giving 20-cm path length in He~ for half the re-
coil neutrons, the rate would be 10 events per
hour.

Possible applications of the deuteron method
for obtaining polarized protons, in addition to
the determination of the KVA and ENZ parities,
would be studies of gross polarization effects in

nucleon-nucleon scattering, and study of the va-
lidity of the spectator model itself. Raising the
polarization analyzer counting efficiency sub-
stantially above 3 @10 ~ would make possible
refined polar ization measurements. The method
is applicable at all incident momenta greater
than 1 BeV/c, and if anything, its reliability
should improve with increasing momentum.

We are grateful to M. Goldhaber, who inde-
pendently conceived of the deuteron method, for
encouraging us to carry out detailed computa-
tions, and to O. Ames, J. %. Cronin, R. Sherr,
S. B. Treiman, and C. N. Yang for their advice.
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Recent experiments in Brookhaven' have re-
vealed that the diffraction peak in pion-nucleon
scattering has a constant shape in the energy
range from 7 to 20 BeV. In the same energy in-
terval the proton-proton diffraction pattern shrinks
logarithmically, perhaps at a somewhat decreas-
ing rate near the high-energy end of the interval.

It is the purpose of this note to explain the rele-
vance for the discussion of diffraction scattering
of a theorem by one of us (R.O. )' concerning the
absence of fixed Regge poles. This theorem also
excludes a large class of other fixed singularities
in the complex angular momentum plane. In addi-
tion we propose models which could give shrinking
and nonshrinking diffraction patterns for different
reactions, and we discuss some of their experi-
mental consequences.

I et us consider first the nonshrinking diffrac-
tion peak in m-p scattering. This behavior of the
differential cross section, together with an essen-
tially constant total cross section, corresponds

very much to what one would expect on the basis
of a simple optical model, where we have an in-
variant amplitude with the asymptotic form

F (s, t) -id(s)t, for t —~ and s ( 0.

Here v't is the total c.m. energy in the mp channel
and (-s)"' is the momentum transfer; we have
ignored spin variables. We will show in the fol-
lowing that the optical model Ansatz (1) is by no
means natural in a causal relativistic dispersion
theory.

In dispersion theory we assume that the ampli-
tude F (s, t) has no essential singularities in the
physical sheet such that it satisfies a dispersion
relation in t with a finite number of subtractions.
We can use this representation in order to define
an analytic function F (s, i) which uniquely inter-
polates the partial-wave amplitudes Ft(s) with
l& 1 for the reaction 7TF -Pp. Then the high-en-
ergy behavior of the v-p scattering amplitude is
given by the leading singularity of F(s, A), at
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least a.s far as the absorptive part At(s, t) is con-
cerned. The complete amplitude may have con-
tributions from elementary poles' in the s channel.
But if we want to have at t- constant and E(0, t) to
become purely imaginary for t —~, then we ex-
pect an asymptotic form corresponding to Eq. (1),
which would imply a fixed pole of F (s, x) at a = 1.
However, we know from the theorem of Oehme'
that no fixed pole is allowed. ' More generally,
the theorem excludes all fixed singularities in
the complex a plane which are such that the func-
tion F(s, X) becomes unbounded'; this includes
logarithmic branch points. We note that an ear-
lier argument by Gribov' excludes an asymptotic
form like Eq. (1) only for s in the interval 4m+'
& s & 16 ~~', and hence it is not applicable in the
physical region s ~ 0.

In an earlier publication we have considered the
high-energy limit of F(s, t) assuming the existence
of elementary vector mesons. We found an as-
ymptotic form like

Z(s, t) - a(s)t + C(s)t
a(s)

(2)

Present experiments' do not seem to extrapolate
to values of g(0, t) which are much larger than
one, but the evaluation of the measurements for
isl & 0. 2 (BeV/c)' has not yet been completed.

Let us now discuss models with y(0, t) = 1. We
find that an allowed fixed singularity at ~ = 1 alone
cannot give a constant total cross section in the
high-energy limit. If we ignore lnlng factors,
we can at best obtain @tot(t)-O[(lnt) ~]. How-

ever, the situation may be different if we con-
sider fixed branch points together with a, pole
trajectory a =a(s) with a(0) =1. Then we have a
situation which is to some extent similar to the
one encountered in potential scattering with a. po-
tential which behaves like gy ' for y-0. 9 In this
case we have a pair of fixed square-root branch
points" in the i plane at k = -,'- + Kg and related
branch points of the Regge trajectories w = a(E)
in the F. plane; we assume here that the potential

where I3(s) is real for real s ~ 0 and where a(s),
with a(0) = 1, is the induced Pomeranchuk trajec-
tory with C(s) =-b(s)x[1+e '~a(s)]. The coeffi-
cient B(s) vanishes for s--~ like an inverse pow-

er, but it may well have an approximately exponen-
tial form for small values of jsj in order to give
a nonshrinking diffraction pattern. However, since
B(0) is real, such a model would imply g(0, t) & I,
where

(, ) = 16
d(7/ds

tot

is attractive for larger values of r. The physical
significance of these singularities has been dis-
cussed in reference 9. They describe the transi-
tion between a normal bound state of the system
and a situation where it "collapses" into the cen-
ter. The position of the fixed branch points is
therefore determined by the balance between
centrifugal and interaction forces. In the general
case the possibility of particle production pre-
vents a collapse, but we may assume that the
fixed branch points are nevertheless present. "
Then we can propose two models:

(1) In the s channel corresponding to the reaction
mm -pp we have attractive forces at small dis-
tances which give rise to a square-root branch
point at x = 1 with positive signature; in addition
we have a Pomeranchuk trajectory a(s). For s
~ 0 the amplitude has the asymptotic form

y'(s, t) - id(s)t(lnt) + C (s)t
-3/2 a(s)

(4)

where we assume that d(s) is given by an expres-
sion like

s 5(s')
d(s) = d(0) exp — ds' s'(s'- s)So

which approximates an exponential for small val-
ues of s but vanishes for s —-~ like an inverse
power. Whether the form (4) gives rise to a
shrinking or nonshrinking diffraction pattern de-
pends mainly upon the relative magnitude of the
cut and the pole terms. We have made numerical
calculations for the case of m p scattering. If the
slow decrease of the total m p cross section be-
tween 7 and 17 BeV/c is fitted by the expression
&yt t-d(0)(lnt) ~'+b(0) with C(0) =ib(0), then it
is very difficult to choose the cut term sufficiently
large in order to explain the absence of shrinking.
One may also make use of the discontinuity of
the trajectory a(s) at s = 0 in order to suppress
the Pomeranchuk term for s &-0.2 (BeV/c)', say.
In this case we still have g(0, t) =1, but g(s, t) has
a kink, and it is essentially a linear function for
s & -0. 2 (BeV/c)' which should extrapolate below
the optical point. This does not seem to agree
with the experimental data. '

(2) The forces at small distances are repulsive.
In analogy to the potential problem we may then
assume that E(s, a) has two conjugate branch points
on the line Re~ =1 which are connected by a cut. "
This cut induces a branch line in the Pomeran-
chuk trajectory a(s) for real s& ~ s ~ 0, where
s&- -~ for a sufficiently strong but finite repul-
sion. Then we can have Rea(s) = 1 for s& ~ s ~ 0,
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whereas Ima(s) varies such that a(s) $1. Since
F(s, t) has no left-hand branch point for t —~,
we see that both Regge poles X = o. (s) and X = n*(s)
contribute to the high-energy limit such that the
asymptotic form for s ~ 0 given by

F(s, t)-;'[C(s+io)t +C(s-t0)t ]
u(s+i0) . n(s - i0)

+ O[t(lnt) ],
-3/2

where the logarithmically decreasing terms are
due to the fixed branch points and where Ren(s)
=1. The expression (6) gives rise to a differen-
tial cross section of the form

do 2 2 v(yi 2 2 pgi 2—-(sinho. .) (lb 1 (1-e ') + lbl (1-e ')
d8 2

e i)(1 e i)[(Reb ) cos2o. . lnt
2

-(Imb ) sin2a. lnt])+ O[(lnt) ], (7)
2 -3/2

2

for s ~ 0 with ai =1m'(s+i0), and I5(s) i being an
expression like d(s) in Eq. (5). This could give
a nonshrinking diffraction peak for mp scattering
provided we can choose u; such that the cosine
term does not introduce disturbing oscillations,
which seems to be possible. The fixed branch
cut in F(s, X) gives a contribution to the total
cross section proportional to d(0)(lnt) ~'; it could

play the role formerly attributed to the Pomeran-
chino (P' trajectory) in connection with the pion-
nucleon dispersion relations. '

In pP scattering we have a shrinking diffraction
peak corresponding to an undisturbed Pomeran-
chuk particle. Therefore we must assume that
in the crossed s channel (pp —pp) there is no short-
range repulsion and hence no fixed cut in the g

plane which distorts a(s). It is important to note
here that in our dispersion theoretic models for
diffraction scattering the leading terms in the
high-energy limit of the nucleon-nucleon amplitude
are the same as those for the corresponding nu-
cleon-antinucleon amplitude. This is simply a
consequence of the fact that in both cases we have
related crossed channels, and hence the same
singularities with positive signature determine
the high-energy limits of both amplitudes near
the forward direction, independent of the charac-
ter of these singularities. The measurement of
the differential pp cross section in the asymptotic
region is therefore of greatest importance for
dispersion theory.

Even within the framework of dispersion theory
we can, of course, construct many other models

which give an approximately constant diffraction
peak, especially if we consider singularities at
x = 1 which change their character as a function
of s such that there is no contradiction with the
unitarity condition for real s ~ 4m„'. These
models, however, look very artificial because
they have no intuitive physical background. It is
also possible that dispersion theory implies that
the accumulations of singularities in the left half
of the a plane actually occur up to the line Re~ = 1."
These condensations could then be such that they
approximate arbitrarily closely an asymptotic
form corresponding to Eq. (1), but do not contra-
dict the theorem of reference 2. They are caused,
a priori, by fixed poles of discF(s+i0, x) along the
left-hand cut at negative integer values of a." In

F(s, x) these poles must be compensated for s
~ 4m& in order not to contradict the unitarity
condition.

As we have seen, it does not appear that an
asymptotic form corresponding to Eq. (1) is very
easy to obtain within the framework of causal dis-
persion theory. One may wonder, therefore,
whether this could be an indication that the dis-

persionn

scheme is too narrow, especially as far
as the assumption of a polynomial bound at infinity
is concerned. If we have an essential singularity
of I (s, t) at infinity in the physical sheet of the t

plane, then we cannot write a dispersion relation
with a finite number of subtractions. In this case
no unique analytic interpolation of the partial-
wave amplitudes Ft(s) is possible, and the theo-
rem of reference 2 is not applicable. It is plau-
sible that such an essential singularity corre-
sponds to a violation of microscopic causality in
small dimensions" characterized by a length a '.'~
A most naive Ansatz would be of the form

F(s, t)- exp~-, -1 +C(s t), .
( sou

a' i

where C (s, t) satisfies the usual dispersion rela-
tions. " For simplicity we consider an amplitude
with complete crossing symmetry. The function
4 (s, t) now could have an asymptotic form like
4 (s, t)-id(s)t, where d(s) must vanish for a'- ~.
But then we mould expect that the asymptotic total
cross section gtot-d(0) contains a ' as a charac
teristic length, whereas the actual magnitude of
gtot(w p) at about 30 BeV/c is rather characteris-
tic for a length of the order m„'. For these and
other reasons it appears superficially that the
puzzles of diffraction scattering in the energy
range presently available are not related to a
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possible smallest length. The problem is rather
to understand the simple optical model within the
framework of dispersion theory.

We appreciate the generous help of F. von Hippel
with the numerical calculations.
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The processes which have been proposed' for
the cosmic production of high-energy photons,
recently detected above the atmosphere, '~' de-
pend on the presence of particles and fields whose
densities are themselves poorly known or un-
known. One additional process, however, does
not share this particular uncertainty. Collisions
between the electrons which are known to produce
the nonthermal radio emission (in particular, the
galactic halo emission) and the photons of star-
light have long been recognized as contributors to
electron energy degradation, but the observable
radiation they must produce has not been consid-
ered. Yet such observations are of astrophysical

interest, for unlike synchrotron radiation, which
depends strongly on 8, this inverse Compton proc-
ess depends only on the rather smoothly distrib-
uted starlight density and on the electron density,
and must occur wherever fast electrons are found
in space.

We can calculate roughly the photon flux due,
say, to electrons in the halo, and compare it with
observations. We use units convenient for astro-
physical purposes' . magnetic fields in microgauss,
energies in MeV or eV, frequencies in Mc/sec,
volume densities in cm ', and distances in light
years.

Some results pertinent to the halo synchrotron
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