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be less than the experimental resolution, on the basis
of the measured cross sections for p+ and p . Ahmad-
zadeh and Sakmar have also suggested the possible con-
nection of the Pomeranchuk particle with other ex-
perimental information for t & 30m~~. 4

6The possibility of the Pomeranchuk trajectory bend-
ing down soon and never reaching 2 cannot be excluded.
However, this is not likely to occur if the quantum num-
bers of the fo have been assigned correctly, which

would imply that another trajectory with the same quan-
tum numbers as the Pomeranchuk, but below it at t = 0,
is able to reach Beo. =2.

~~After this work was completed, S. J. Lindenbaum
et al. presented some high-energy PP data at the 1963
Annual Meeting of the American Physical Society,
New York, January 1963 (postdeadline paper), which
support the latter alternative. See K. J. Foley et al. ,
Phys. Rev. Letters 10, 376 (1963}.
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In all the work on Regge poles and their relation
to high-energy behavior and other problems in the
strong interactions, ' one has had to deal with an
expression which is not explicitly crossing-sym-
metric. Thus to get the asymptotic behavior of
one channel, one has to look at the partial-wave
expansion in the crossed channel. The problem
is more acute when one wants to perform a cal-
culation in which both the conditions of crossing
symmetry and Regge behavior are imposed. In
this note we shall briefly sketch the derivation of
a crossing-symmetric %'atson-Sommerfeld trans-
formation which has the advantage that it simul-
taneously displays the contributions of the Regge
poles in all three channels.

This result came out of an analysis which at-
tempts to free Regge poles from their strict at-
tachment to angular momentum and Legendre
expansions, and shows that the same poles appear
when one looks at the coefficients of other expan-
sions. For example, we show that if a function
f(z) =~(t)pt(z) is such that a(t) is meromorphic
in / for Ref &--'„and as Ill- ~, a(l)-tl~2e t~,

$ & 0, then if one expands f(E} in a power series,
f(E}=Qvc(v)zv, c(v} will again be meromorphic
for Rev&-'-, . lt will have the same poles, nj, as
a(l) plus poles at n - 2, n&

- 4, ", etc. A similar
result holds if one expands the nonrelativistic
scattering amplitude in powers of the momentum
transfer t, f(s, t) =Qvc'(v, s}tv. Now, however,
c'(v, s) will have the same poles as the partial-
wave amplitude for Rev & -~ plus poles at nj ~p

oj -2, ", etc. A detailed account of this analy-
sis and a complete proof of the results given be-
low will be published elsewhere. "

We consider the relativis"ic scattering of two
spinless equal-mass particles and take the mass
to be unity. We assume, for simplicity, that

l " p„(s', t')
Q, (s, t) =—, ds' dt'

(s i - s) (t i - t) ' (2)

and similar expressions for the other two I.'s.
We do not write the subtractions explicitly in (2),
as we shall not need them. Martin' recently
showed, under assumptions weaker than those we
take below, that the three functions pzj uniquely
determine A(s, t, u). Our final result gives an
explicit demonstration of this fact.

Let us now assume that the partial-wave ampli-
tudes of all three channels are each meromorphic
in l in the region Rel & -';. Following Oehme, '
we consider only moving poles in the / planes.
We further assume that the partial-wave ampli-
tudes behave as in potential scattering for I E I- ~ in the right half-planes. These assumptions,
of course, are far from proved but let us accept
them for the present discussion.

For simplicity we take only one pole in each
channel which for some real value of s, t, or u
shows up in the region Rel) -';. We assume that
the trajectories turn back into the left half-plane
for large values of their arguments. In other
words, we take

Ren, (s) & -';, s, & s & s„.
Ren, (t) &-";, t, «t&t, ;

Ren, (u) & -';, u, &u &u, .
Outside the intervals above we have Rem~ &-';.
Obviously, if the n's satisfy the usual properties,

there are no bound states or single-particle poles
and write the Mandelstam representation for the
invariant amplitude

A(s, t, u) =L„(s,t)+L„(t,u)+L„(s,u),

where
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We muat haVe S1 t1 Q1+ 4.
Let us now expand each of the L,2j's in a double

power series and write

X(s, t, u) = g c„(v, p. )svti" + g c„(v, p)tvu"
v, p, v, p

+ Q c„(v, p)svu"; v, p =0, 1, ". (4)

vugg

Rev&sup [Ren, (y)],

Rep&sup [Ren. (x)]. (8)

The domain given in (6) can be extended if we
now use the assumptions we have made about the
partial-wave amplitudes of each channel. By us-
ing the usual Regge type expressions for p2j, one
can factor out the singular terms in (5) and obtain
the following result:

These series converge absolutely for s, t, u in the
Euclidean region, ' i.e. , 0& s, t, u & 4 and s + t +u
=4. No matter how many subtractions we need
in (2), if they are finite, then for large enough
integers v and g, we have the following expres-
sion for c;&(v, p):

l ~ -v-1 -IL(. -1
c . .(v, p) =— dx l~ dyp (x,y)x yF44 4

i,j=l, 2, 3.

The right-hand side of (5) can now be used to de-
fine a unique interpolation of c;~(v, p) for complex
values of v and p. which is clearly analytic in the
region

The residues ytr(x) are all proportional to I3t(x),
the residue of the partial-wave amplitude of the
ith channel at l = n;(x). The function ct&(v, p, ; n&)
will be given by an expression like (8) with i re-
placed by j and the role of v and p, interchanged.

One can easily see from (8) that ct (v, u; ni) is
analytic in v in the region Rev &-'-, . (The residues

y;r vanish as x - ~. ) However, in the p plane
one has to exclude the curves p =nt(x) - r traced
as x varies from 4 to ~, and their complex con-
jugates p, =n.~-r. Thus a simple pole in the g

plane seems to have become a more complicated
singularity when one goes to the p, or v plane.
However, fortunately when we substitute (8) into
the double series (4) and carry out the summation,
the situation simplifies tremendously and one ob-
tains a form which is identical with the Regge pole
contributions of a single power series expansion.

As Rev-~, c;&"'(v, p)-(4) "and as Rep-~,
ci& "'(v, p) - (4) P . Furthermore, one can show
that c;&"'(v, p) vanishes if I Imv I- ~ or I Imp I

—~.
Similar asymptotic properties hold for the other
two functions in (7).

Keeping s, t, u in the Euclidean region, we can
now apply the Watson-Sommerfeld transformation
twice to each series in (4). We obtain

1~-- +2oo ~ —+200 (P)t
L„(s,t) =-— i, dv ' dp4 1

2 1 slav s101Tp,
2 oo

x(-s) (-t)" + Q R(t; n, (s)-r)
r=O

c..(v, p) =c.."'(v, p)+c. .(v, p, ; n. )
2j

'
2j

'
2j

' '
2

+ Q R(s; n, (t)-r).r=o (10)

+c. . (v, p; n.).
2j

' ' j

4' r. *(x)
2r

p —n. '(x)+r
2

(8)

where a = -[p - n (x) + r], a' = -[p - n *(x)+ r].
The integers n; are determined by the conditions

'-, &sup [ eR(n) xn, ] -&'-„ i=1, 2, 3. -

Here the function c;&"'(v, p) is regular in the re-
gion Rev & -'; and Hey. & -,'-. For the other two
terms, one can get an explicit representation of
the form

4 y. (x)8

c, .(v Q' n. ) = Q . l x dx
ij

' ' i r 02vi. , u - n. (x)+r
2

The functions R(t; n, (s) - r) are given by

n, -r
R(t; n (s)-r)=-y. (s) J . dx+ .

( ( ) )
~(-t) '

1

Re(n, (s) —r) & —j; (lla)
and "x''
R(t' n (s)-r)=r (s).1 2r ~ X-t-ie

Re(n, (s) - r) (-';. (lib)

These functions correspond to the full contributions
of the usual Regge pole defined in reference 5.
They represent the full contribution of a pole in
the v plane at v = n, - r, which one would obtain if
he considers a single power series expansion in
powers tv. The two expressions (1la) and (lib)
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are identical in the strip -1 & Re(n, - r) & 0. The
bracket in (lla) has the correct cut starting at
t =4, since one ean easily check that the discon-
tinuities of the two terms inside the bracket can-
cel in the interval 0&t&4.

Representations analogous to (10) hold for I,»
and L,». We can now continue in s, t, and u.
The background term in (10) defines a function
which is analytic in the cut s a,nd t planes. The
cuts seem to start at s = 0 and t = 0; however,
we shall see below that using the asymptotic be-
havior of c;&'", one can show that the cuts start
at s =4 and t =4. The functions R are also an-
alytic in the cut planes with the correct thresh-
olds. As we vary s, t, or u, the different
R's take the form (lla) or (lib), depending on
whether Remi - ~ + -'; or + -';.
(lla, ) to (lib) takes place in an analytic manner,
since, if one considers n as a parameter, R as
defined in (1la) and (lib) is an entire function of
n. It is essential in the crossing-symmetric
problem to factor out the background term of
each pole as in (1la). Due to the condition s +t
+u =4, one always varies at least two of the vari-

ables together and one must have an analytic mech-
anism for the appearance or disappearance of
terms like the second term in (lla) as the (n; —r)
move from one half-plane to the other.

To go back to the background term of (10), we
introduce the functions

b. .(x,y)
U

dv l dux y c, , (Ir, ll, ). (12)
—2+goo -2+& p (0)

g2l7Z g Zoo
U

2 $002

Using the behavior of c»"' for large p and p, , one
can easily show that 5;&(x,y) = 0 if either x & 4 or
y &4. Furthermore, 5;& vanishes when either of
its arguments becomes infinite. In terms of this
function, (10) can be rewritten as

Pl j
f.„(s,t)=f dxf dy

" 'y + Q R(t; a, (s)-r)x-s y-t r=0

n
+ R sj Q2t (i3)

r=O
The Mandelstam type double integral here always
converges and needs no subtractions. The final
result for the whole amplitude will be

b„(x,y) b„(x,y) t „(x,y)A(s t u) =I dxf dy( ")(' )+f dxf dy( ")(' )+f dxf dy(

+ Q [R(t; n, (s)-r)+R(u, n, (s)-r)]
&=0

n2
+ Q [Rl'u; o.,(t)-r)+R(s; n, (t) r)]-

y=0
ns

+ Q [R(s; n, (u)-r)+R(t; u, (u)-r)].
y=0

(i4)

Thus starting from a subtracted Mandelstam
representation for A(s, t, u), we have obtained an
expression for it in terms of an unsubtracted
Mandelstam representation plus the contributions
of all the Regge poles that for some value of s,
t; or u show up in region Rel & -';, The R func-
tions in (14) can themseives be represented by
double dispersion type integrals which, however,
will need subtractions.

Needless to say, it is easy to check from (ll)
and (S) that (14) will lead to the same asymptotic
behavior in s, t, or u as the usual Regge repre-
sentation. ' In writing down (14), we have for
simplicity taken all three poles nz to have even
signature. The ytr's are all proportional to P;,

the residue of the partial-wave amplitude of the
g th channel at l = n;. Their dependence on the
a s is such that near a resonance in any channel
(Reo.t =n, n integral), the second terms of (lla)
just combine to give us the usual Regge term
proportional to P;P~. (X;)/sinn@;.Z Qg

Finally, we note that even if we have bound
states or single-particle poles to start with, the
final result will still be as in (14). This is, of
course, under the assumption that the partial-
wave amplitudes have no fixed poles in /. The
bound states then will be on a trajectory and the
pole on the physical sheet of the s, t, or u plane
will appear in the R functions. The derivation of
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(14) will differ slightly in this case and the details
will be given in reference 2.
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In all the present discussions, one assumes that P~(x}

vanish faster than x ~2 as x
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(I) The principal aim of this work is to derive,
in illustration of a general procedure, relation-
ships that obtain among the relative weights' of
the decays of various resonances into baryon-
meson states in the Ne'eman —Gell-Mann theory
of strong interactions, when exact invariance un-
der SU~ suffers a first-order perturbation by in-
teractions invariant under only isospin and strange-
ness transformations. In particular, we deal with
those resonances~ which Glashow and Sakurais
have associated with the irreducible representa-
tion (IR) of SUS with highest weight~ (3, 0).

(rr) We may best explain our procedure by con-
sidering first a much simpler situation involving
the decay of a particle (of isospin I with z compo-
nent v) into two particles (of isospins I, and I, with
z components v~ and vz) in a theory whose charge
independence suffers a first-order perturbation
by an interaction (e.g. , the electromagnetic in-
teraction) which commutes with the operator Iz
but not with P and hence may be taken to trans-
form under g~ like the Iz —-0 component of a vec-
tor operator. We denote the matrix element for
the decay by (I,v,I,v, i T tIv) and consider the sums

P, (v) =Qv i (I,v —vP, v, I T 1Iv) I ',

Pm(v~) =Qv ( (I~v~I2v~ ) T lIv~+ vm) I . (2)

We easily prove that P,(v) is (A,) independent of
v to zeroth order and (B,) of the form (o +Pv) to
first order in the perturbation, and similarly that
P, is (A,) independent of v, and (B,) of the form

r, =r, +r, = r, +r, = r„
r, +r, +r, =r, +r, +r„
r, +r, =r, +r, =r, +r„

and hence we have the complete solution

2r, = 3r, =6r, =6r, =3r, =2r„

(3.A, )

(3.A )N

(3.A,)~

in the zeroth order of the perturbation. In the
first order of the perturbation, we fail to get a
complete solution, but only the identities

r, - (r, + r, ) =(l', + r, ) -(r, + r, )

=(i +l )-r', (5 B,)

(r, +r, ) -(r, +r,) =(r, +r,) -(l, +l,). (5.B,)~
(III) We now generalize the discussion of para-

(y+ hv~). The result (A, ) states the equality of
the total weight for all decays for different charge
states of the decaying particle; result (A,) is the
Shmushkevich theorem' for the decay. Results
(B,) and (B,) are new. The proof of these results
involves only simple facts regarding A~ including
properties of Clebsch-Gordan coefficients, the
Wigner-Eckart theorem, and the fact that C(jlj,
m0m) is proportional to m for fixed j.

We illustrate using the decays of the well-known
3-3 nucleon resonance N* into nucleon plus pion
states. As an aid to the application of the above
results, we draw up a Shmushkevich table (Ta-
ble I) for the allowed processes. We see that re-
sults (A,) and (B,) give
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