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Imn(t) & 0, for f, - t« (Ha)

As a consequence, all the derivatives of o.(t) for

Two experimental groups have recently re-
ported on the discovery of a ~~ resonance at
about 1250 MeV that is probably an I = 0, J= 2

state. ~ It was conjectured that this resonance,
called f', is the "particle" predicted by Chew
and Frautschi on the basis of the Regge-pole
scheme. s In that case, it should lie on the Pom-
eranchuk trajectory. Ahmadzadeh and Sakmar
have tried to test this conjecture, starting from
a four-parameter expression for the imaginary
part of the Pomeranchuk trajectory u(t). » They
assume the usual properties for this trajectory
and conclude that the f0 cannot lie on it, if at
the same time one accepts the published anal-
ysis of the high-energy pp scattering in terms
of the Pomeranchuk trajectory. The purpose
of this Letter is to prove that, as conjectured
by Ahmadzadeh and Sakmar, this result is in-
dependent of the choice of an Ansatz for Imo(t),
provided some current ideas on Regge trajec-
tories are correct. In the first part, some gen-
eral bounds derived for boson Regge trajectories
are used to relate values of n(t) for negative t
to the slope of the trajectory at t =0. Then it
is sho~n how this slope restricts the possible
values for the energy and width of a resonance
that lies on the same trajectory. When these
results are applied to the Pomeranchuk particle,
it is concluded that either the slope of the Pom-
eranchuk trajectory has been seriously over-
estimated from the pp data, or the Pomeranchuk
particle is likely to have an energy less than or
approximately equal to the p-meson energy. Ex-
perimental work directed towards testing the
latter possibility is encouraged. In that case,
the f0 resonance still could fit into the Regge-
pole scheme as possibly belonging to the trajec-
tory proposed by Igi. 5

We assume that a boson Regge trajectory as
a function of the energy-squared satisfies the
dispersion relation

o.(t) =c((~)+—,dt', for to&0, (Hl)
1 1m o.(t')

0

with

t &t0 are positive, and this implies a severe re-
striction on the behavior of n in that region. In
particular, we expect to be able to put a lower
bound to the slope of o. at the origin, if n(~),
n(0), and o.(t,) for any negative value of t, are
given. In some instances, this bound will be
twice the slope of a straight line through o.(t,)
and o.(0). In order to derive this and other re-
lated results, it will be useful to prove the fol-
lowing lemma: Let $(t) satisfy the dispersion
relation

with Im)(t) & 0 for a «t&~. It follows that

for t, &t2, t„ t„and ts-a, where the - sign
holds for t, «t, or t, -t» and the - sign for t,

Proof: —From Eq. (1) we have

Im $(t) & 0, for Imt & 0,

and

Re((t) &0'

Im/(t) =0
for t real and -&t &a.

Therefore the function

(4)

with C, A, and P(t) real, and p(t) & 0. From
Eq. (4) it follows for t real and -~ & t & a that

Therefore, because 7)(t) is a concave function
for t & a, we have

for t~&t2, t„ t2, and t2-a. Here again the-
sign holds for t~ t, or ts - t„and the - sign

has no singularities except for a right-hand cut
and a pole at infinity, and can be represented as'
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for t, - t~ ~ t, . Equation (2) follows trivially
from Eqs. (6) and (3). This completes the lem-
ma.

%e now apply the above lemma to the function
a(t) -a(~) .In particular, if we let t, -t, =o
and t, = t in Eq. (2), we obtain for -~ & t &0

suming

Rea(t) has at most one inflection point for t & t

(H3)

(H4)

or

[a(0) - a(~)]'
(o) — ( ) + (o}lti

=L ')'

Q (0) ()) )
' a(0) ++( )I' (8)

1 [a(0) - a(~)]2

From assumption (H3) and the fact that a "(t) & 0
for t «to, it follows that

(d/dt) Rea(t) & [Rea(t ) —a(0) ]/t, (12)
t=t

In the case of the Pomeranchuk trajectory, re-
lations (7) or (8) plus the values of a(t) obtained
in the high-energy experiments provide a lower
bound for a'(0). 8

Our aim is now to study what restrictions on
the energy and width of a resonance follow from
a given value of a'(0). The idea is that the tra-
jectory, which has a positive curvature up to
threshold, has to stay above its tangent line at
t =0 until its imaginary part has become ap-
preciably large, and that when this happens,
the Regge pole is so far from physical values
of l that it is likely to give rise either to a very
broad resonance or to no resonance at all. The
detailed argument is as follows: %'e want to find
under what restrictions it is possible to have a
resonance at a value t& of the energy-squared
such that

ImP(t) = Ima(t), for t & t & t
A

=Ima(2t -t), for t &t&2t -t0' (13a)

for the values of tft satisfying relation (10). Our
next step is to put a lower bound to Ima(ttt) such
that, combined with Eqs. (11) and (12), it will
provide a restriction on the permissible values
for 1 (tR). It is clear that such a bound for
Ima(t&) exists and is larger than zero, be-
cause if we had Ima(t~) =0, from assumptions
(H1), (H2), and (H4) a,ll the derivatives of Rea
would be positive up to t =t&, and therefore
Rea would not satisfy relation (9). This sug-
gests splitting n into two parts, P and y, one
of which has a zero imaginary part for t& t&.
Therefore, we def ine

Rea(t ) &a(0)+t a'(0),8 1 2' to Imp(t')
t

dt, (13b)

t ) [Rea(t ) —a(0)]/a'(0). (10)
y(t) = a(t) p(t)— (14)

We know that Rea(tft) has to be equal to the spin
of the resonance in question, but that this con-
dition is not sufficient to have a resonance. In
addition, our experience with the nonrelativistic
case shows that at t = t~, Hen must still be in-
creasing steeply as a function of t, and Imn
must still be small. The width of the reso-
nance in the energy variable is related to these
two properties and is given approximately by
the function

1 Ima(t)
&t (d/dt) Rea(t),' 'A

%e require that the trajectory considered pre-
sent these two characteristics at t = t& by as-

From the above definitions it follows that P(~)
=0, P(o) oo, ReP(ttt) =o, y( ) = a( ), y(o) a(o),
and y(t&) =Rea(tR). In order to have Imy(t) ~ 0
on the real axis, we assume further'

Ima(t) -Ima(2t —t), for t &t &2t - t, (H5)0'

which is consistent with the properties discussed
above. Thus we can apply our lemma to the
function y(t) - y(~). We let t, - t2 = 0 and t~ = t ~ a
=tft in Eq. (2), and obtain

(t) („) [y(o) —y(")]'
y(0) -y( ) -ty'(0)'

The denominator in this expression is positive
because it is so at t =0, and y(t) is finite for
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t ~tR. We can therefore mrite for I, =tR where

[y(0) -y(~)][y(t ) -y(0)]

[y(f ) -y( )]

[o.(0) - a(~)][Reo,(t ) —y(0)]R
[Rem(f ) —o(~)]

and
tap

1 'R
B(f )= ln

1 B v(t -f) t(2t t) '

R 0

Now, from assumption (H4), we have

P(0) -B (t„)1m~(t„)

It then follows that

y(0) & o.(0) —Imo. (t )B (f )

y (0)-o (0)-1m~(t )B (t ) . (16)

P'(0) « B (f ) Imo. (t ), From relations (15) and (16) we obtain a lower
bound for Imo. (t&). This result, combined with
relations (11) and (12), gives the final bound

(t )"'Io.( ) —o.(0)+a'(0)t [Reo.(t ) —o.( )]/[Rea(i ) —o.(0)]f

[~(0) —u( )]B (t„)+[Re~(t„)—~( )]B,(f )t
(i7)

We also take

o.(0) = i.

n(~) & -1,

(H6)

(H7)

as suggested by the work of Gribov and Porn-
eranchuk. " It can be easily verified that the
bounds given by relations (7), (8), and (17) are
increasing functions of n(~). Therefore we re-

We want to apply the above results to the Pom-
eranchuk trajectory, which controls the high-
energy behavior of total cross sections and there-
fore satisfies the conditions&

place in these relations a(~) =-1, and our re-
sults are valid a fortiori if o.(~) & -1. Finally
we put f, =4m~' and Rea(tB) = 2, as is the case
for the Pomeranchuk particle. We then obtain
from Eq. (17)

(f )"'[3f n (0)-2]
R 2B (t )+3t B (f )OR R1R

for f & I/ '(o0)

In Fig. 1 the function 1,(t) from relations (7),
(H6), and (H7) is plotted for o."(0)= 1/80, I/50,
and I/35. The values of a(t) obtained by the
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FIG. 1. Curves a, b, and c are lower bounds for
n(t) given by Eqs. (7), (H6), and (H7) for 0.'(0) - 1/80,
1/50, and 1/35, respectively. The experimental data
are from reference 13.

FIG. 2. Curves a, b, and c show low'er bounds for
I(t&) given by Eq. (18) for 0. '(0) -1/SO, 1/50, and
1/35, respectively. The experimental values for the
energy squared and width of the f are indicated
(references 1 and 2).
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Brookhaven and Cornell groups from the analysis
of the high-energy data are also indicated. ~~'~

If we apply the inequality (8) to the three values
for lower it I, we obtain o. '(0) ) 1i29 with 90
confidence. Eventually one may expect this
bound to be lowered by the presence of other
than statistical errors in these data. However,
the values of 4(t~) obtained from Eq. (18) and

plotted in Fig. 2 show that unless a'(0) is less
than I/80, then 1 (80) has to be much larger than
the experimental width of the f' resonance. There-
fore, within the scheme presented here, and
provided the analysis of the high-energy PP data
is accepted, this resonance cannot lie on the Pom-
eranchuk trajectory. The Pomeranchuk particle
might be found at a value of t smaller than or ap-
proximately equal to 30 m~ . &I Alternatively
one may conclude that other L-plane singularities
for PP scattering (e.g. , the P' and &u Regge poles)
have conspired to simulate a falsely large slope
for the Pomeranchuk trajectory. '

I am indebted to Professor Geoffrey F. Chew,
Professor Gyo Takeda, and Professor Charles
Zemach for encouragement and many helpful
discussions, and Mr. A. Ahmadzadeh and
Mr. I. Sakmar for day-to-day communication
of their results. I also want to thank Dr. David L.
Judd for his kind hospitality at the Lawrence
Radiation Laboratory.
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In all the work on Regge poles and their relation
to high-energy behavior and other problems in the
strong interactions, ' one has had to deal with an
expression which is not explicitly crossing-sym-
metric. Thus to get the asymptotic behavior of
one channel, one has to look at the partial-wave
expansion in the crossed channel. The problem
is more acute when one wants to perform a cal-
culation in which both the conditions of crossing
symmetry and Regge behavior are imposed. In
this note we shall briefly sketch the derivation of
a crossing-symmetric %'atson-Sommerfeld trans-
formation which has the advantage that it simul-
taneously displays the contributions of the Regge
poles in all three channels.

This result came out of an analysis which at-
tempts to free Regge poles from their strict at-
tachment to angular momentum and Legendre
expansions, and shows that the same poles appear
when one looks at the coefficients of other expan-
sions. For example, we show that if a function
f(z) =~(t)pt(z) is such that a(t) is meromorphic
in / for Ref &--'„and as Ill- ~, a(l)-tl~2e t~,

$ & 0, then if one expands f(E} in a power series,
f(E}=Qvc(v)zv, c(v} will again be meromorphic
for Rev&-'-, . lt will have the same poles, nj, as
a(l) plus poles at n - 2, n&

- 4, ", etc. A similar
result holds if one expands the nonrelativistic
scattering amplitude in powers of the momentum
transfer t, f(s, t) =Qvc'(v, s}tv. Now, however,
c'(v, s) will have the same poles as the partial-
wave amplitude for Rev & -~ plus poles at nj ~p

oj -2, ", etc. A detailed account of this analy-
sis and a complete proof of the results given be-
low will be published elsewhere. "

We consider the relativis"ic scattering of two
spinless equal-mass particles and take the mass
to be unity. We assume, for simplicity, that

l " p„(s', t')
Q, (s, t) =—, ds' dt'

(s i - s) (t i - t) ' (2)

and similar expressions for the other two I.'s.
We do not write the subtractions explicitly in (2),
as we shall not need them. Martin' recently
showed, under assumptions weaker than those we
take below, that the three functions pzj uniquely
determine A(s, t, u). Our final result gives an
explicit demonstration of this fact.

Let us now assume that the partial-wave ampli-
tudes of all three channels are each meromorphic
in l in the region Rel & -';. Following Oehme, '
we consider only moving poles in the / planes.
We further assume that the partial-wave ampli-
tudes behave as in potential scattering for I E I- ~ in the right half-planes. These assumptions,
of course, are far from proved but let us accept
them for the present discussion.

For simplicity we take only one pole in each
channel which for some real value of s, t, or u
shows up in the region Rel) -';. We assume that
the trajectories turn back into the left half-plane
for large values of their arguments. In other
words, we take

Ren, (s) & -';, s, & s & s„.
Ren, (t) &-";, t, «t&t, ;

Ren, (u) & -';, u, &u &u, .
Outside the intervals above we have Rem~ &-';.
Obviously, if the n's satisfy the usual properties,

there are no bound states or single-particle poles
and write the Mandelstam representation for the
invariant amplitude

A(s, t, u) =L„(s,t)+L„(t,u)+L„(s,u),

where
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