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is seen to hold over a range of five decades. Here
k is the wave number of the particle being scat-
tered, der/dQ is the differential elastic cross sec-
tion, and vt t is the total cross section.

We shall show that this empirical law can be
understood in terms of an optical model in which
the medium is taken to be purely absorptive, and
to be spatially distributed according to a Yukawa
function. Thus the change in wave number in the
scattering region is

-Ark' —k =ir)s jr. (2)

The optical model gives for the scattering ampli-
tude2

f(e) =ikf I-e Z, (kep) pdp,
2i6(p)

and for the total and elastic cross sections

cr =4m j. -e pdp,
2i6(p)-

tot

It is surprising that it has not previously been
observed that the measurements of the elastic
proton-proton scattering for high momentum
transfers follow a simple power law. This is
shown by Fig. I, in which all the experimental
results of the CERN and Brookhaven groups, ' for
proton initial momentum greater than 8 BeV/c,
are shown on a log-log plot as a function of the
square of the momentum transfer, t. A relation-
ship

(4rr/kcr )2drr/dQ = const/f
tot

cr =2m, 1-e pdp,
2i6(pP '

el 0

and the phase shift is

2'(p) =f (k' - k)ds,

with r' =s~+ pn. From (6) and (2) we find 6(p)
= ir)ff, (Ap).

If we measure the momentum transfer in units
of A, y =k8/A, Eels. (8), (4), and (5) take the form

f(e) = i(k/A')Z(r), y'),

o, ,= (4v /A' )S(q),

cr = (2rr/A' )s(ri),

(8)

with

E(rl, y') =f (I —exp[-2rIK0(x) ])Jo(yx)xdx, (10)

S(ri) =E(rl, 0) =f (I —exp[-2r)K (x) pxdx,

s(rl) =f (I —exp[ 2rlK, (x)]px-dx
0

In Table I we give some values of S(r)) and s(rl),
and in Fig. 2 we have plotted (A2/4rr)atot = S(rl)
and (arel/crtot) =s(rl)/2S(g) as functions of ri.

Eq. (10) for E(rl, y~) is convenient for small y;
to find a form good for large y, write J,(yx) =-,'

X[HO'"(yx) +Hor"(yx)] and rotate the two resulting
integrals to the positive and negative imaginary
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where y is Euler's constant, and t =y~. For q-0,
E(g, t) is proportional to q, and (14) reduces to the
Born approximation result, i.e. , to the first two
terms in the expansion of the Fourier transform
of I"- 0 in powers of 1/t.

Eq. (14) gives, for large t,

FIG. l. (4~/k(Ttot)2do/dQ as a function of t. The
straight line is a t 5 law. The curve is the prediction
of the optical model. The circles give the experimen-
tal points of Diddens et al. , ~ the triangles those of Fo-
ley et al. , ' the square that of Baker et al. '

ko dQ S g

— sinwg t . 15
2 I'(1+ g) y . -2(1+q)

s(z)
axes. This gives

E(q, y') = (2/m) J {sin[~gZ, (x) ]}(exp[wqN, (g) ]}

x K,( yx)~dx. (13)

The observed t law would require g= &. From

Table I. (A /4~)atot=S(g), (A /2m)crel=s(q), and ael/
~tot s{g) 2S(g) as functions of q.

—I'(2+ q)*wq cos(wq)/t], (14)

By changing the integration variable to z =yx, and
suitably expanding the first two factors in the in-
tegral in powers of (z/y)', we obtain the asymp-
totic form of (13), valid for y» 1 and small q/y~. m

The leading terms in the asymptotic expansion are

E(q, t) = (2/m)t '(y'/t) "[I'(1+g)' sinmq

0.318
0.637
1.OOO

1.273
1.500
1.910

S(n)

O. 5528
O. 9927
1.413
l.685
1.893
2. 231

s(q)

0.1127
0.3004
0.5216
O. 6825
O. 8104
1.028

s (q) /2S(q)

0.1020
0.1513
0.1846
0.2025
0.2140
0.2304
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Fig 2, we see that )7 = $ corresPonds to oei/otot
=0.214, in good agreement with the observed ra-
tio, oel/otot = 9 mb/39. 5 mb = 0.23.

However, there is a difficulty with this explana-
tion. Because of the factor sino', E()7, f) is nega-
tive for q = &, and this means that the scattering
amplitude, and the elastic cross section, must
vanish for a value of t smaller than those at which
(14) is valid. Since such a diffraction zero is not
observed, we are led to seek another explanation.
The largest value of )7 for which F(q, f) does not
change sign is q= l. At this critical value (14)
has a remarkable behavior: The first term van-
ishes and the second term becomes dominant.
Instead of the t 4 law indicated by (15), we obtain
t ', (15) being replaced by

(4m/!rc )'(fc/dQ = [8y'/S(1) j'f '. (16)

The difference between t ' and t ' is not of too
great concern, since we shall see shortly that
the values of f (in units of A') covered in the ex-
periments are not so large that the asymptotic
form is literally correct. In fact, we may an-
ticipate, since the curve of Fig. 1 must bend to
the left for smaller t, that for intermediate t the
true curve will be a little less steep than indicated
by (16).

The choice g=1 leads to the unique prediction
oel/otot =0. 185. This is somewhat lower than
the experimental ratio, 0.23, which has an er-
ror of about 10%, but is in the right neighborhood.
The interesting point is not the exact value of the
predicted ratio, which could be altered somewhat
by a more complicated choice of the radial depend-
ence in (2), but rather the notion that a particular
value of oel/&stot is a significant parameter. This
leads us to examine the ratio for ~++p scattering,
which, according to Jones et al. ,

~ is 0.24 for m

+p and 0.22 for w++ p at 5 BeV (again with a 10%)
error), strikingly close to the p —p value. Our
thought is that a condition such as g =1 should be
interpreted as being the value approached at very
high energies. It would follow that the shrinking
of the diffraction pattern in p -P scattering, ob-
served by Lindenbaum and Yuan between 8 and
20 BeV/c, is a transitory phenomenon, and that
ultimately the width, and oel/stot, decline to a
limiting value.

For g = 1, the shape of the diffraction curve is
completely determined, and can be calculated nu-
merically, from (10) for small y, and from (13)
for large y. The results are given in Table II.
In order to compare with the experimental results,

Table II. (A2/ak)f =F(l, y2) and (4'((/koto't)mdo/dQ
= [E(1,y2) jS(1)]2as functions of y; y=t~~.

S'(1,y') P'(1, y')/~(1) l'

0
0.25
0.5
1
2
3

5
6

1.413
1.330
l. 053
0.5300
0.1082
2.38g x10 2

6.264 x10 '
1.934 x10 '
6.666 x10

1.000
0.8858
0.5575
0.1407
5.861 x10 3

2.858 x10
1.965 x10 ~

1.873 x10
2.226 x10-~

k'-k=i q~e +gee P&l, (17)

we have 5(p) =i[g,Ko(Ap) +)7affo(APe) j, and in (13)
we replace wrCo(z) by v[)7tCo(x) +)7@o(Pz)j, with
Co = J, or No. Eq. (14) is replaced by

z(q, f)

2 P "'&y ",. 2(1+q)'I'(1+g)'sin(v)7) 1+
t (t t

x ()7, +q,P*) a ln —,- P(2+q)+I -)7aPalnP
L

I'(2+)7)'o()7, +)7,P') cosa@ 2(2+ q)a

t

x (n + n j) ) —' In —- ((3 + q) + ( - n)() (nl) I,y'

(18)
where (((z) is the logarithmic derivative of the
gamma function, and q=)7, + q, . In (18) we have
included the next terms in the asymptotic expan-
sion.

it remains only to determine the scale factor, A.
Eq. (8), with ot t=39. 5 mb, S(1)=1.413, gives
A'=0. 1750 (BeV/c)', A=0. 4172 BeV/c=2. 996mv.
The calculated curve, with this scale factor, is
shown in Fig. 1. It imitates a t law remarkably
well between values of the ordinate from 10 3 to
10 ~, and also gives a fair description for smaller
t.

The agreement could undoubtedly be improved
by a more complicated choice of (2), since the
values for small and large t depend on different
features of the assumed radial dependence. For
example, if (2) is generalized to
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Aside from a scale factor, the dominant terms
in (18) again depend solely on q. This illustrates
the fact that for large t we are looking in the re-
gion near r = 0, where (17) becomes

k' - k =iq/r.

The characteristic feature of (14) and (18), the
occurrence of t ~ and of the sining and cos~q fac-
tors, disappears if we consider a radial depend-
ence in (17) which does not have a I/r dependence
at the origin (q=0). In such a case, the asymp-
totic expansion is a power series in I/f, begin-
ning with 1/tm or a higher power. It should also
be noted that the asymptotic formula becomes
good only when t is large compared to the square
of the largest mass in (17); this is shown by the
factor (q~+gmj32) in the correction terms.

While the result for large t depends primarily
on q and (g, +g~p ), the integrals appearing in oei
and vtot depend on different features of the radial
function. In a crude approximation these may be
expected to be related to the Fourier transform
of (17) for small I, and thus on the combination
('Ih+ ggjl )y g'iving &7 I/ot t-s(gq+qm/p )/28(qq+q2 j
P'). In this way it would undoubtedly be possible
to somewhat alter the predicted oei/stot without
much changing the scattering for large t.

We turn now to the meaning of the unique condi-
tion g =1. I et us suppose that in the center-of-
mass system our scattering problem is the solu-
tion of a Klein-Gordon equation with an imaginary
potential. If the potential is taken to be a scalar
function, it will lead to a vt t which vanishes as
the energy goes to infinity. %e therefore intro-
duce the potential as the fourth component of a
four-vector, i. e. , like the electrostatic potential.
The wave equation is then

(2o)

and, for V small compared to E, the change in

g'/nc =7) =1. (23)

The features of the elastic p - p scattering, the
ratio of elastic to inelastic scattering and the
rapid fall-off without diffraction oscillations,
require for their explanation an absorption which
is concentrated towards the center, as in (22),
and a unique coupling strength, given by (23).
The final statement, of course, goes beyond what
can be strictly inferred from experiments cover-
ing only a limited range of t, but is strongly sug-
gested by the existing results.
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wave number in the scattering region is given by
k'I-k2=2iEV/I~c', or, for large k,

k' —k =t(E/Pc) V(r)/hc =i(c/v) V(x)/Bc.

To give the correct scattering, V(r) must have
the property

(22)

Comparing this with (19), in the high-energy limit
(v/c =1), we find
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