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FIG. 3. {dIjdV)s j(dIjdV)~ vs V (measured from Q)
for an Al-Pb junction at 0.40 K compared with the phonon

spectrum for aluminum.

Also shown in Walker's~ Al phonon spectrum (re-
calculated by Phillips7). It will be seen that the
prominent longitudinal peak at 34 mV, as well as
the end point of the spectrum at 39 mV, are re-
flected in the tunnel characteristic. Structure at
lower biases was masked by the Pb but an Al-Al
sandwich will be investigated.

Figure 2 (curve C) also shows d'I/dV' vs V for
a Sn-Sn sandwich and a large amount of structure
is observed, some near the Debye energy of 17
mV. The rather surprising low-energy structures
were at first thought to be due to Pb impurity in
the Sn films but were exactly reproduced after
thorough cleaning of the evaporation system and

use of a high-purity tin source. The fundamental
structure in tin is only as strong as the sum and

harmonic structure in lead (curve B) and there-
fore about @ the magnitude of the lead fundamental
peaks.
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EFFECTIVE TUNNELING DENSITY OF STATES IN SUPERCONDUCTORS*
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Recent tunneling experiments'" involving super-
conducting metals exhibit structure in the I- V
characteristic which has been interpreted in terms
of electron-phonon processes. In the preceding
Letter' Rowell, Anderson, and Thomas present
the results of improved experiments which more
clearly resolve this structure. Below we sum-
marize the results of a theoretical determination
of the tunneling characteristic which is in good
agreement with these experiments.

To include dynamic interactions between phonons
and electrons in a consistent manner, it is nec-

essary to extend the conventional expression for
the tunneling current. '&' Ne take the point of
view of Bardeen and of Cohen, Falicov, and
Phillips who characterize the tunneling process
by an effective one-body Hamiltonian

8 = Q ('I', c c, +H. c.j.5f a

Ak's

Here cp~ and cy~ destroy and create electronsa

in Bloch states of momentum k, energy ey meas-
ured relative to the chemical potential p. , and
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x(n Ic, 10 ) 5(W +W -V).a,' b a
a k's a n n

(2)

Here in~) and ink) represent exact energy eigen-
states of metals a and b in the absence of both

HT and the applied potential V (measured in elec-
tron volts). The excitation energy W„ is given
by the difference in energy of the states in~) and
10 ); Wn is defined in a similar manner. For
V«p, the dominant contribution in (2) comes from
states k and k' near the Fermi surface. In this
case we can approximate Tkki by its average value
in this region and reduce (2) to the form

=const d~N ~A V- (

Here NT i(&u) is the effective tunneling density of
states for meta, l i defined by

N (u)) =N (0)J de p. (k„(u),

where

p. (k, cu) =Q (n. lc 10.) b(W —p - cu),
+ if ' i i

i ' „ i ks i n
(»)

2

p. (k, &u) =Q (n. !c 10.) 5(W +y, —~),i ' n. i ks i n

and N(0) is the density of Bloch states in energy
at the Fermi surface. By definition p~(k, ~) are
the spectral weight functions for the one-electron
Green's function G(k, &u), and hence it follows
from (4) that

N (&u) =+ de ImG(k, ae).N(O)
Tk 7T

Thus, a knowledge of G(k, &u) suffices to determine
the tunneling current under the above conditions.
(In the above derivation a spherical Fermi sur-
face with an effective mass has been assumed. )

To determine |"it is convenient to use the for-
malism of Nambu' and write

( )
(8+6(kq (d)

u)'- I'(k, (u) - a'(k, ( )+i0+

where e(k, ~) =uk/Z(k, &u) is the renormalized

spin orientation s in metals a and b, respectively.
At zero temperature the transition probability
per unit time for an electron to tunnel from a to
b is given to lowest order in T by @=1)

=2m+ QT, (n Ic IO)bt

"a"b kk's kk' b ks

Bloch energy and b. (k, ~) =4 (k, c )/Z(k, r ) is the
complex energy gap parameter. By using the fact
that Z and a are essentially independent of k, (6)
and (I) may be combined to give

N (~)

N(0) [u)'- a'((u)]"' '

For 6 independent of ~, this expression agrees
with the conventional BCS density of states dek/
dE =E/(E'- b, ')"' for IE I

& L and zero otherwise.
Note, however, if b, varies with ~, the effective
density of states appropriate to the tunneling pro-
cess NT(&u)/N(0) differs from the standard quasi-
particle form [dE(ek)/dek] ', where E(ek) is the
real part of the pole of 6 on the second sheet.
This difference, essential in understanding the
structure in the I- V' characteristic, is due to
the fact that cks 10~) and cks 110k) are not quasi-
particle eigenstates of metals a and b as they are
within the simple BCS approximation. Thus, one
cannot use the standard quasi-particle density-
of-states expression which is appropriate, for
example, in calculating the electronic specific
heat. Equation (8) is easily generalized to finite
temperature.

We calculate a(~) and Z(u ) by including both
electron-phonon and Coulomb interactions. The
phonons are characterized by a frequency distri-
bution F(&u&) and are coupled to the electrons by
an interaction strength o. (~&). The screened
Coulomb interaction is replaced by a pseudo-
potential U defined to include interactions between
electrons outside a band of energies j co I& ~~,
which is large compared with the Debye energy.
The integral equation determining the complex
gap parameter is then

1

a(~)=, , d(u'Re, „„,„,
,

', du) n'((u )

xF (&u )[D (&u'+e)+D (&u'- v)]- U, (9)
A. q q

where D&(x) =(x+~&-i0+) ', b, ,=-b, (b.,) is the gap
parameter at the edge of the energy gap, and ~
labels the phonon polarization. Notice that Z does
not enter the integral in (9); it is reduced to quad-
rature, once b, (&u) is known, by

P

[I - Z((u)](u =I! cd(u'Re, Jd(u u '(u) )aQ (~(2 gi2)V2 q A. q

xF (4) )[D (u '+ u, )-D (u, '-(u)] (10)
A. q q q

Equations (9) and (10) have been solved by an

337
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on-line computer facility for a simplified model
devised to represent the phonon spectrum of Pb.
The distribution of longitudinal and transverse
phonons was approximated by the sum of two
Lorentzians, centered at frequencies cu, =8. 5

x 10 ' eV and ~,t = 4. 4 x10 ' eV and having half-
widths (,i=0. 5x10 ' eV and u,~=0. 75x10 ' eV.
The coupling parameter o.&(&u&) was taken to be
a constant independent of both q and the polariza-
tion a; this is a reasonable approximation since
the dominant part of the phonon interaction in-
volves umklapp processes. The Coulomb pseudo-
potential was adjusted to U = 0. 11, the value we
believe appropriate to lead. The cutoff ~~ was
taken equal to Vw, +b0 While the spherical
Fermi surface approximation is a fairly good one
for Pb, ' we need not rely on this fact in compar-
ing with the experimental results3 since these
were performed with dirty superconductors.

In Fig. 1, 6, and 6» the real and imaginary
parts of ~, are plotted as a function of energy.
The effective density of states (8) is plotted in
Fig. 2 along with the result of the simple BCS
model. The gross structure of NT(cu) can be
understood by expanding NT(~) to first order in
~2; thus

crease of the phonon emission rate produces a
rapid increase of a„accompanied by a decrease
of 6, . Both changes produce a sharp drop of
NT(&u) near these phonon emission thresholds.

The experimental verification of the structure
in NT(&u) can be obtained from the S-V charac-
teristics for tunneling between a normal metal
(say Al) and lead in the superconducting and in

the normal states, as described in the preceding
Letter It.follows from (2) that the ratio of the
differential conductances in the two states is

V

f. i 2—

ds, (v ds (v) N (v)

dV dV N(0)
~

[V'- a'(V)]v'~~

The experimental data of Rowell, Anderson, and
Thomas, also shown in Fig. 2, are in remarkably
good agreement with the theoretical curve, con-
sidering the simplicity of the model we used.

We would like to emphasize that the electron-
phonon coupling is so strong for lead that the
quasi-particle picture is meaningless over much
of the energy spectrum. Nevertheless, the

N (~)/N (o) = I + [&,'(~) —&,'(~) ]/(2~')

At energies ~, +6, and ~, +6„ the strong in-

t. io—

1.08—

i.06—

1.0—
O 104—

Iz z
1.02—

I.OO

0.98—

.2

0.96—

0.94
0

—4

-I 0—

FIG. 1. Plot of the real (solid) and imaginary
(dashed) parts of &(~)/~~t vs {~-&o)j~ . Here
w&

—4.4x10 eV and 40 —l.34x10 eV.

FIG. 2. The effective tunneling density of states
NT{~)/1V(0) vs (~ -+0}/(d~ (solid) and the density of
states of the simplified BCS model cu/(w —& )~
{short dash). The ratio of the differential conduct-
ance of Pb in the superconducting to that in the nor-
mal state,

dl {u)/chal
S

dl {(u)/d~'
n

is plotted {long dash) as a function of (cu -40)/~&
for T =1.3'K. These data were obtained from the
tunneling experiments reported by Rowell, Ander-
son, and Thomas.
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Green's function approach we used above is suf-
ficiently powerful and simple to allow us to treat
this problem in detail without making the quasi-
particle approximation.

%e are indebted to Thompson-Ramo-Wooldridge,
Inc. for making the on-line computing facility
available to us free of charge and to George Boyd
for aid with the computations. %'e are also grate-
ful to J. M. Howell, P. W. Anderson, and D. E.
Thomas for several stimulating discussions re-
garding the model used to represent the phonon
spectrum of Pb and for prepublication use of their
tunneling curves.
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Structure of Matter, University of Pennsylvania, cover-
ing research sponsored by the Advanced Research Pro-
jects Agency.
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INTERNAL MAGNETIC FIELD IN THE de HAAS —van ALPHEN EFFECT IN IRON*
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The de Haas-van Alphen effect has recently
been observed in iron by Anderson and Gold, ' who
find the striking result that the field quantity
entering the expression for the Lorentz force on
a conduction electron is B = 8+4aM+. In particu-
lar they report that the effective field is 8+Ho,
where H, =21.4~1.9 kG in one orientation and
21.9~ 1.7 kG in another; the value of 4mM+ is
21.8 kG. By definition B is the average magnetic
field over the volume of a specimen, weighting
all volume elements equally, on the assumption
that the magnetic carriers are not shifted in po-
sition by the test charge. ' %ith this assumption
B is the field seen by a cosmic-ray particle. But
it is not at all clear why a conduction electron
should sample all volume elements equally, and
for this reason the experimental result is unex-
pected, and, in fact, other values had been pre-
dicted. %'e consider the theory below and find
that the theoretical internal field Ho is, in fact,
just 4vM+ for the model used.

%'e consider a mode1 with one conduction elec-
tron in a ferromagnetic crystal; at each lattice
point of a cubic lattice there is a rigidly bound
magnetic moment

y. . = (geh/2mc)S . .

%e neglect the spin of the conduction electron,
but look only for interactions of the bound spins
S; with the momentum p of the conduction elec-

tron. In lowest order the perturbation from the
(orbit)- (other spin) interaction' is

e [pxr. j0'=
mc . i r.

where ri is the vector to the conduction electron
from the ith lattice point. If we neglect the off-
diagonal component of the magnetic moment and
set p, = p.; for all i,

ep, p y. -x.px i i y
mc . r.'

%e consider a specimen in the form of a thin
slab parallel to the Yz plane; the specimen is
magnetized along the z axis. By symmetry
Q(y;/r ) =0. The sum QQ;/r ) can be evaluated
by its electrostatic analog: It is the x component
of the electric field vector inside a lattice slab
bearing a unit positive charge on each lattice
point. %e have, for n lattice points per unit vol-
ume

x iG-x—,=4vnx+ Q C- e
~

3 - G
(4)

where the contribution 4nnx represents the effect
of a uniform distribution of charge; the oscillatory
term is periodic in the reciprocal lattice. The
coefficients CG may be calculated, but we do not


