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the behavior of g(1.0) from Eq. (6) as a function
of r .Also shown for comparison are gCHNC(1. 0),

g Y(1.0), and g H(1. 0). The lables CHNC a.nd

PY on the lowest curves in Fig. 2 indicate the re-
sults obtained with Eq. (6) when gsr is calculated
with the CHNC and PY equations, respectively.

Any errors in g from Eq. (6) might be expected
to vary with r . When these errors are negligible,

C
g will be independent of r . For this reason, we
believe that the flat region of g in Fig. 2 (where
the CHNC and PY equations are producing almost
the same gsr) may be very close to the exact val-
ue of g. This value compares much more favor-
ably with gPY than with g HNC (with rc = ~).

In conclusion then, we are lead to believe that

the PY equation is superior to the CHNC equation
for long-range potentials as well as short-range
at the temperatures and densities we have in-
vestigated. In addition, the procedure described
here may provide a means of determining a nearly
exact g in cases where it shows a region inde-
pendent of r~.
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g(r) = ~(r) (r &R),

C(r}= -v(r) (r&R),

C(r) =0 (r&R). (2)

An increasing body of numerical computations
has given strong evidence for the adequacy, over
an extensive range of parameters, of various ap-
proximate integral equations for the radial distri-
bution function of a classical fluid. The simplest,
and on the basis of comparisons thus far made,
the most satisfactory of these, is due to Percus
and Yevick (PY}. Despite its simplicity, this
equation until now has not been solved rigorously
in any special situation, so that its basic proper-
ties have not been ascertained. It is the purpose
of this Letter to obtain in closed form the pair
distribution and equation of state of the PY equa-
tion for the prototype of interacting hard spheres.

The PY equation' for hard spheres is given by

r(r) = 1 +n f 7 (r ')dr '
fr f&R

- n f T(r') T(r r')dr', (1-))r') &R,
jr-r') &A

where A is the hard-sphere diameter, n is the
particle density. The function v(r) of PY' is re-
lated to the pair distribution function g(r) and the
direct correlation function C(r) of Ornstein and
Zernike' by

g() ( )

G(t) =R f rT(r) exp( sr)dr, -

E=R T rxdr,-s ~

q= &vR n, sA =t,

we obtain

t[F(t) + G(t)] = t '[1+24~]-
—12 rt[F( t) —F(t) ]G(t), -(3)

where the real part of s must be greater than zero.
On expanding the PY equation in powers of the

density, one finds that in second order C(r) re-
tains the functional form obtained in first order,
namely, a cubic polynomial with quadratic term
absent. This suggests trying a solution of the
form

-C(x) = n+ Px+yx'+ 6x', (4)

where x = (r/R), computing F(t) and F(-t} and
solving Eq. (3) for G(t) One can sh. ow directly
from (1) that T("}(r), with the superscript denot-
ing differentiation, is continuous at r =8 for n
= 0, 1, 2, and that T(0) = 1+24 gK. The values of
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If we take the one-side Laplace transform of (1),
defining

A
F(t) =R f rr(r) exp( sr)dr, -
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7 (n)(it) can be expressed in terms of G(t) by not-
ing that for t large

ill = (I q) '(I+-q+ q'), (7)

where P is the pressure and P=(1/kl). Equa-
tion (7) is identical with the result of Reiss,
Frisch, and I ebowitz. ~ It follows that the PY
equation does not show a phase transition, and
that near close packing it has the form of the
free-volume theory with the packing density too
large by a factor SvY'/m.

Inserting the result of Eq. (5) into

n=0

where v(x) =x7'(x). Solving the four simultaneous
algebraic equations, we obtain two solutions'.

o. = (I + 2 q)'/(I - q)',

~ = -6q(l+ &q)'/(I —q)',

@=0,

5 = g(l + 2q)'/2 (I —7l)',

and o. = y = 6 = 0, p = -(67l) '. The second set must
be discarded, since it implies a negative g(r) at
r =R. We have shown that the first solution in-
deed satisfies all conditions on 7 (r) arising from
the discontinuities of higher derivatives of 7(r) at
r =8; the details will be given elsewhere.

Thus the direct correlation function is

C(x) = -(1 —q) [(1+2q)'- 6q(1+ ~q)'x

+ q(l + 2q)'qx'],

and the equation of state calculated from this by
Eq. (71) of PY' is

close the contour by a large semicircle in the
left-half plane (LHP). The residue of the pole
at t =0 contributes 1 to g(x). The other poles oc-
cur in pairs ti, t~*. A.mong them there exists a
pair which is closest to the y axis and which de-
termines the asymptotic behavior for large x of
g(x) —1. In the limit of q going to 1, however, all
poles approach points on the y axis given by &y
= tan(&~y) and the oscillation frequency of g(x) - 1

increases without limit with increasing x.
In order to obtain g(x) in closed form for given

x, it is necessary to expand the denominator of
Eq. (9) in powers of L(t)/S(t). We must find a,

contour on which IS(t) I & )L(t)e } is satisfied.
We can accomplish this by replacing the segment
of the y axis from -iP to iP by a semicircle It)
=P in the RHP, with P sufficiently large. We can
show that P must be greater than the real positive
root of S(t). Therefore we will get contributions
from all three roots of S(t}. Writing

g(x) = Q g (x),
n=1"

we have

g (x) =(24mqxi) fe [L(t)/S(t)] tdt,

so that gn(x) =0 for x &n, and for x &n, g(x) is
equal to the sum of the residues of (12 rtx) '
xe (x "}[L(t)/S(t)]"t at the roots to, t„ tm of S(t)
Thus, in the mth shell m&x&m+1, xg(x) has the
form

2

Q P (x}exp(tp),
E=O

1+24 gK - tmF(t)

t + 12 qt[F(-t) - F(t) ]' (8)
where Pt (x) is a polynomial of order m - 1 in x.
For the tl, we obtain

5+i~ tx(,} g ) tL(t)e N
5 —i 12 ~[L(t) +S(t)e ]

(9)

we find that a factor of [L(-t) +S(-t)exp(-t)] appear-
ing in both the numerator and denominator of (8)
cancels, and we obtain for g(x)

-1 .E .-Et =2q(I —q) [-1+x,j +x j ], (10)

where I =0, 1, 2 andj = exp (~n'i). Here x+ = [f+(f
+ ~~) ~']~' and f= (8+ 3q - q')/4q'.

In the first shell 1 &x & 2, for example, we ob-
tain

where S(t) = (I - q)~t + 6q(l —g)t~+ 18 xgt - 12 q(1+ 2q)
and L(t) = 12 q[(1+ ~~g) t + (1+2q) ].

We have shown that the denominator of Eq. (9)
has no zeros in the right-half plane (RHP). This
has two consequences. For x &1 we can close the
contour by a large semicircle in the RHP, obtain-
ing g(r) =0 for r&R, as required. For x&1, we

where

2

xg(x) =(I-7l) 'Q A expt (x- I),
l l

2

QHj
rn =0
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and
H =&+yg,

H, = -(4q) '(f '+ g) "'[x '(I - 3' - 4q')

+x+(1 - pre) ],

H =(4q) '(f + ') "'[x '(I -3g-4q')

+x (1- gg')].
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A method of creating a magnetically confined
hot plasma for study utilizes energetic particle
injection. This method, as it is being employed
in the Livermore ALICE experiment, ' ' and in a
similar experiment4 in the United Kingdom, in-
volves the passage of beams of energetic neutral
atoms diametrically through a highly evacuated
region within which steady confining magnetic
fields of mirror geometry are maintained. Ioni-
zation of a portion of the neutral beam, by colli-
sion with residual gas atoms and by Lorentz force
breakup, '&~ leads to the buildup of a plasma of
high mean kinetic energy (20 keV in the ALICE
experiment). While the plasma densities thus
far achieved in our experiments have been modest
(of order 10' ions/cm'), unusual cooperative ef-
fects have already been seen.

This Letter reports the observation of new modes
of stable oscillation of a low-density plasma con-
fined between magnetic mirrors. The oscillations
are of low frequency, ranging between 5 and 50
kc/sec. Two "branches" are observed: One
branch is close to the calculated frequency of
precession (v&) of 20-keV ions in the midplane
magnetic field gradient and is roughly independent
of plasma density; the other branch varies roughly
linearly with plasma density. Discontinuous
"jumps" between these two branches are also oc-
casionally seen, supporting the picture that we
are observing cooperative modes of stable plas-
ma oscillations. Although the frequencies and

observed characteristics of the oscillations are
not compatible with any of the usual modes of
plasma oscillation, we believe that they can pos-
sibly be explained in terms of ' finite-orbit" sta-
bilization effects of the general type proposed by
Rosenbluth, Kroll, and Rostoker (RKR). ' One
of us (R. F.P. ) has extended their theory to the
low-density regime, finding oscillation frequen-
cies which seem to agree reasonably well with
the observations.

The oscillations were detected on three electro-
static probes disposed around the periphery of
the plasma. One of these also serves to limit the
radius of the plasma to 12 cm. The following
summarizes the observations:

(1) The signals are of two types, as character-
ized by frequency vs plasma density. Figure 1
presents observations made at a midplane mag-
netic field 9,=12.5 kG. The plotted points, each
representing several runs, are averages of read-
ings made during beam injections at various
levels, ' errors shown are standard deviations of
the mean. The dashed curves are data taken
after beam turn-off and represent individual runs.
Signals of Type 1 lie at or near the calculated
value of vII (22 kc/sec) for all densities. During
the plasma density decay (after beam turn-off)
signals of this type remain nearly constant iri fre-
quency. Curve 1 of Fig. 1 shows a typical indi-
vidual decay of this type. Signals of Type 2 taken
during beam injection exhibit frequencies which
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