
UoLUME 10 15 APRIL 1963 NUMBER 8
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A recent Letter by Percus' presents a new deri-
vation of integral equations for obtaining the radial
distribution function g(r) for a monatomic fluid
whose particles interact pairwise. A paper by
Broyles, Chung, and Sahlin~ indicates that, of the
Born-Green, convolution-hypernetted chain (CHNC),
and Percus-Yevick (PY) equation, the PY equation
appears to give the better agreement with Monte
Carlo calculations for the Lennard-Jones 6-12
potential. Percus gives his reasons for expect-
ing good results from the PY equation for short-
range potentials. The question is left open, how-
ever, as to the performance of these equations
for long-range potentials of the Coulomb type.
To answer this question, we present here one set
of results for the radial distribution function for
a classical electron gas calculated from the PY
equation, the CHNC equation, and from a new
method sketched below.

The PY and CHNC equations yield essentially
the same results for short-range pair potentials
in many cases but give considerably different
answers for the long-range pair potentials. Our
method makes possible the calculations of g(r)
for a long-range potential when the radial distri-
bution function for a short-range potential, gsr(r),
is given. For this method we employ the real
and imaginary parts of the collective coordinates
introduced by Bohm and Pines, ~

The Fourier transform of the radial distribu-
tion function is given by

N
g-= — ~ ~ ~ exp ik r - r - d'r. , 2

j=l
where Z is the value of the integral in Eq. (2)
when k is zero, and U is the potential energy of
the system. Separating the pair potential into a
sum of a long-range and a short-range part4 and
expressing the long-range part of the total po-
tential energy in terms of the Xk's, we obtain

gk=-,'&z [x(N —i)z] 'f "j(x '+x ')sr k -k

xexp(-QA-X -/2)dUdX-,k k

d=z 'f fexp(-U /KT)II 5(x--x-(r ~ ~ ~ r ))sr
k

k k 1 n

lr
/VKT,k k

p-= Q exp(ik r.) =(X-+iX -)2 v'.
k i k -k

&=1

where yk
r is the Fourier transform of the long-

range part of the pair potential, and V is the vol-
(t) ume of the system of N particles.

It is known from the work of Bohm and Piness
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FIG. 1. Radial distribution functions. For r/a &1.3, g from Eq. (6) is
nearly equal to gpY, while for r/a & 1.3, it is nearly equal to g

that a first approximation to J is given by

-exp(--,'X-'/(X ') )(2II(X ') 0-"',
k 'k kJ kJ (4)

computed for a short-range potential

4sr=q'(r '-r '),
C

where ( )~ means "quantity averaged over the

weight function J." In cases usually found in the
literature, exp(-Usr/KT) is not included in the
definition of 4 and consequently (Xk )~=N. For
the more general case given here, one obtains '3.90— CkNC rc = m

=0 r&r .

For the curve shown, r = 1.9. Figure 2 shows

a) N(N 1)V-xg sr+N
k J k (5)

Substituting Eq. (5) into (4) and Eq. (4) into (3)
gives, to a first approximation,

-1 sl(N-1)V g- +1

1i NI3V @ [(N-1)V g +1]+1
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FIG. 2. g(1.0) from Eq. (6) as a function of r . For
comparisons the corresponding gDH gpY and gCHNC

are also plotted for r
C

If J is expamded in a series of Hermite poly-
nomials, ' it is possible to obtain higher order
terms for g .k'

Radial distribution functions computed with the
aid of Eq. (6) are shown in Fig. 1 together with
the solutions to the PY and CHNC equations. For
comparison the g given by the Debye-Hiickel (DH)
theory is also shown. The unit of length is the
ion sphere radius a given by a =(3V/4wN)v A.
dimensionless parameter is defined by 8 = aKT/q'
which is the temperature with the unit of energy
equal to the potential energy of two ions separated
by a unit distance. The g» shown in Fig. 1 is
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the behavior of g(1.0) from Eq. (6) as a function
of r .Also shown for comparison are gCHNC(1. 0),

g Y(1.0), and g H(1. 0). The lables CHNC a.nd

PY on the lowest curves in Fig. 2 indicate the re-
sults obtained with Eq. (6) when gsr is calculated
with the CHNC and PY equations, respectively.

Any errors in g from Eq. (6) might be expected
to vary with r . When these errors are negligible,

C
g will be independent of r . For this reason, we
believe that the flat region of g in Fig. 2 (where
the CHNC and PY equations are producing almost
the same gsr) may be very close to the exact val-
ue of g. This value compares much more favor-
ably with gPY than with g HNC (with rc = ~).

In conclusion then, we are lead to believe that

the PY equation is superior to the CHNC equation
for long-range potentials as well as short-range
at the temperatures and densities we have in-
vestigated. In addition, the procedure described
here may provide a means of determining a nearly
exact g in cases where it shows a region inde-
pendent of r~.

*This research was aided by funds from the National
Science Foundation.
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g(r) = ~(r) (r &R),

C(r}= -v(r) (r&R),

C(r) =0 (r&R). (2)

An increasing body of numerical computations
has given strong evidence for the adequacy, over
an extensive range of parameters, of various ap-
proximate integral equations for the radial distri-
bution function of a classical fluid. The simplest,
and on the basis of comparisons thus far made,
the most satisfactory of these, is due to Percus
and Yevick (PY}. Despite its simplicity, this
equation until now has not been solved rigorously
in any special situation, so that its basic proper-
ties have not been ascertained. It is the purpose
of this Letter to obtain in closed form the pair
distribution and equation of state of the PY equa-
tion for the prototype of interacting hard spheres.

The PY equation' for hard spheres is given by

r(r) = 1 +n f 7 (r ')dr '
fr f&R

- n f T(r') T(r r')dr', (1-))r') &R,
jr-r') &A

where A is the hard-sphere diameter, n is the
particle density. The function v(r) of PY' is re-
lated to the pair distribution function g(r) and the
direct correlation function C(r) of Ornstein and
Zernike' by

g() ( )

G(t) =R f rT(r) exp( sr)dr, -

E=R T rxdr,-s ~

q= &vR n, sA =t,

we obtain

t[F(t) + G(t)] = t '[1+24~]-
—12 rt[F( t) —F(t) ]G(t), -(3)

where the real part of s must be greater than zero.
On expanding the PY equation in powers of the

density, one finds that in second order C(r) re-
tains the functional form obtained in first order,
namely, a cubic polynomial with quadratic term
absent. This suggests trying a solution of the
form

-C(x) = n+ Px+yx'+ 6x', (4)

where x = (r/R), computing F(t) and F(-t} and
solving Eq. (3) for G(t) One can sh. ow directly
from (1) that T("}(r), with the superscript denot-
ing differentiation, is continuous at r =8 for n
= 0, 1, 2, and that T(0) = 1+24 gK. The values of
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If we take the one-side Laplace transform of (1),
defining

A
F(t) =R f rr(r) exp( sr)dr, -


