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that we cannot distinguish between a decay in

flight and a decay at rest for a residual momen-
tum of less than 60 MeV/c, i.e. , we do not count
the time spent in the last segment of track corre-
sponding to this momentum, about 2. 5 microns.

The result we obtained using the Bartlett maxi-
mum likehood method' is

7 ( He'~') = 1.4+,",x 10 "second. '

It should be pointed out that there may exist in
the scanning a bias against finding decays in flight.
However, due to the fact that we restricted our-
selves to mesonic decays, and that the plates
were thrice scanned, we expect such a bias to be
small.
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The purpose of this note is to present arguments
which suggest that the forward peak of high-ener-
gy elastic scattering does not shrink.

First, we discuss how one should analyze the
data to obtain evidence concerning shrinkage.
%e show that both p - p

' and n. - p
' scattering are

not only consistent with, but rather suggestive of
no shrinkage. 3

Secondly, we present a simple argument which
supports no shrinkage in terms of a complex,
energy-dependent effective potential. %e also
construct a more specific model of high-energy
elastic scattering and show explicitly how this
model predicts no shrinkage and produces a finite
(nonzero) total cross section in the limit of infinite
energy.

Let A(s, t) be the elastic amplitude as a function

of s, the square of the c.m. total energy, and t,
the negative of the square of the c.m. momentum
transfer. Throughout this note, we assume that
A(s, t) behaves, when s —~ and t is finite, as

A(s, t) —P(t)s exp[-';trna(t)), (1)

where o. (t) and P(t) are real functions of t and
a(0) = 1. According to a recent derivation' of (1),
this behavior is expected as long as A(s, t) is
analytic in the sense of Mandelstam, and the
phase 6(s, t) of A (s, t) satisfies a certain condi-
tion. Since this condition is sufficiently weak,
we assume (1) and consider in this note how a(t)
behaves as a function of t. If o. (t) changes with
t near t = 0, the forward peak of high-energy
elastic scattering shrinks, while there is no
shrinkage if u(t) does not vary.
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%'e now discuss how one should analyze data to
obtain evidence concerning shrinkage. Here the
main point is that (1) is the asymptotic form,
while the available data refer to finite energies.
For finite s and f, A(s, t) must be written as

A(s, t) =P(t)s y(s, t) exp[-';iso. (t)],
n(&)

where y(s, t) satisfies for finite t

lim y(s, t) =1.
g~ce

The total cross section is then given by

a (s) ~ hnA(s, f = 0)/s ~ Rey(s, 0),tot

(3)

(4)

while the c.m. differential cross section is ex-
pressed as

«Idfl 0'(&) y(s, &)
' 2[&(&)-1]

(«/«) 0
P'(0) y(s, O)t=0

(5)

In both published analyses, '~' the factor in (5}
which involves y(s, t} is assumed to be unity.
However, atot(s) and thus Rey(s, 0) are not nec-
essarily constant' in the energy regions concerned.
Therefore, we must examine if the factor in
question modifies the published conclusions. '~'

In the Michigan analysis, ' (5) is plotted against
t with s fixed. They retain those data which fit
a pure exponential form of (5) as a function of t.
They find' that this exponential form is independ-
ent of s. Now, (5) can, in fact, be written as an
exponential function of t in a region near t = 0.
The exponent becomes [p +y(s) + 2o."(0) Ins]t,
where a constant P is due to P(t), a function y(s)
is due to y(s, t), and n'(0) is the derivative of
n(t} at f = 0. The condition (3} implies that y(s)- 0 as s - ~. Thus, y(s) and 2n'(0) lns cannot
cancel each other because of different asymptotic
behaviors, especially when s becomes large.
Therefore, the energy independence of the expo-
nential form must mean both y(s) = 0 and o!'(0) = 0.
This is why the Michigan analysis' could be valid
evidence for no shrinkage in m -p scattering. To
confirm this, however, it is necessary to find
the same evidence also in the higher energy re-
gion.

%e wish to point out that the high-energy P -P
datav also have the energy-independent exponential
form in a region of small t between 12 and 26
BeV of the lab incident nucleon momentum. Since
atot(s) is constant' in this energy region, it is
possible that y(s) defined above is zero. Then
these data are not only consistent with, but rather
suggestive of no shrinkage in p -p scattering.

In the CERN analysis, ' the logarithm of (5) is
plotted against lns with t fixed. They conclude
shrinkage by fitting, as linear functions of lns,
all the data with I t I up to 1.1 (BeV)' and s/2M'
greater than 4, M being the nucleon mass. Now,
the difficulty is that (5}never allows this linear
fit unless the factor which involves y(s, t) is unity.
Even if this factor approaches unity as s —~ be-
cause of (3), this factor, in general, causes
apparent shrinkage for finite s, which necessarily
disappears as s -~. This means that the data
fall on curves which approach straight lines
asymptotically. Furthermore, a(t) should be
determined by the asymptotic slopes, but not
by the over-all slopes, of these curves. The
reported evidence' is, however, due to the over-
all slopes. In fact, the experimental points' do
not seem to fall on straight lines but rather on
curves which clearly tend to horizontal lines as
s —~. Therefore, the data' actually suggest no
shrinkage in p - p scattering.

%'e may argue also as follows. The above lin-
ear fit becomes legitimate as s becomes suffi-
ciently large. Suppose that is the case in the
region where atot(s) is constant. ' This requires
that only data with s/2M' & 14 a,re used. The ex-
perimental points' then become consistent with
no shrinkage. In fact, the experimental points'
towards the high-energy end clearly fall on hori-
zontal lines. Thus the data' suggest no shrinkage
in p- p scattering.

The point in our ar~pIment is that we must elim-
inate the effect due to y(s, I) in (5) in order to
see valid evidence for shrinkage. Possibly the
best way to do this is to make a series of analyses
using the data with increasing minimum energy
and see how evidence for shrinkage changes as
the minimum energy increases.

%e now present our physical argument which
supports no shrinkage. First we observe that
a. (t) is, according to (1), essentially the phase
of A(s, t) in the limit of s - ~. Therefore, no
shrinkage implies that the phase of A (s, t) in the
limit of s - ~ does not vary in a region near t = 0,
and vice versa. %e then suppose that high-en-
ergy elastic scattering is described at least quali-
tatively in terms of an effective potential which
is complex and energy dependent. In the limit
of s - ~, this effective potential must become
pure imaginary due to dominant absorption. It
then follows, independently of the details of the
effective potential, that the scattering amplitude
becomes pure imaginary as s —~, not only in
the forward direction but also in the directions
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corresponding to a finite momentum transfer.
This is how our argument suggests no shrinkage.

To explain the above argument more explicitly,
we write down the Schrodinger equation

[~+k'- V(r, k')]y(r) = 0, (6)

where V(r, k') is complex and energy dependent
and is assumed to be spherically symmetric for
simplicity. The scattering amplitude f(8) is then
given' by

f(8)=(k/f)J ~,(k8i) e -1 fdf,
0

X(f ) =-(1/2k)J V(r, k')de,

where 8 is the scattering angle, Jo(k&b) is the
Bessel function of the zeroth order, and the in-
tegral in X(b) is along a straight line parallel to
the incident direction with the impact parameter

The solution (7) is correct as long as kd» 1,
where d is the distance within which V(r, k')
changes appreciably and 8 6 1/kd «1. The last
condition implies that the momentum transfer,
48, is allowed to be finite. %e see by inspection
that f(8) becomes pure imaginary for all 8, as
long as V(r, k') becomes pure imaginary, inde-
pendently of the details of V(r, k').

Our specific model of high-energy elastic scat-
tering is a Schrodinger potential model of (6)
where V(r, k') satisfies the conditions (a) that
V(r, k') becomes pure imaginary and does not
vanish in the limit of k'- ~, and (b) that V (r, k')
is analytic in 4' except for a finite number of
poles and a single cut which extends from the
inelastic threshold to +~along the real axis. "

Because of conditions (a) and (b), V(r, k') has
a phase representation of the type in reference 4.
If the phase 6(r, k') of V(r, k') along the cut satis-
fies the condition of reference 5, V(r, k ) ap-
proaches, as 4'- ~, a simple power behavior of
k. The power is 2n —25(r, k'= ~)/v, where n is
an integer due to polynomials in the phase rep-
resentation and 5(r, k' = ~) is ';m plus an integer
multiple of m. Therefore, the only powers which
do not make V(r, k') vanish as k'-~ are 1, 3,
5, etc. This means that V(r, k') must diverge as
4'- ~ at least linearly in k.

The total cross section otot(k') is given' in
terms of f(8) by otot(k') = (41r/k) Imf(8 = 0). If we
approximate V(r, k') by an effective square-well
potential" with the range R and the depth V, we
obtain

1 1 -g 2
o (k') =2~R'Re 1+2 —+—,etot 0 0 Q

a =iVR/k,

where Re stands for the real part. Since absorp-
tivity implies that Imp& 0, a becomes asymptoti-
cally a positive real number. Moreover, a can-
not vanish as 4'- ~because of the divergence in

V(r, k'). Therefore, R must remain finite as-
ymptotically in order for @tot(k ) to remain finite
as k'- ~. This is how our model, in fact, pre-
dicts no shrinkage, while it produces a finite
total cross section as k'- ~.

We add a few remarks. First, it is plausible
that V(r, k') diverges only linearly in k. Then
the dispersion relation for V(r, k') indicates that
ReV(r, k') remains finite asymptotically, pro-
vided ImV(r, k') approaches its limit sufficiently
fast. This behavior of ReV(r, k') is quite reason-
able. Secondly, our model does not seem to
violate" the Mandelstam assumption. Finally,
the analyticity of V(r, k') is crucial in concluding
that R is finite asymptotically. Otherwise, a
could vanish as 0'- ~, which then implies that
R must diverge as k'- ~ in order for atot(k') to
have a nonzero limit as k'- ~.

We have also completed" a formal analysis
which, in fact, predicts no shrinkage. This
analysis consists of assuming the double phase
representation for the elastic amplitude, which
is the two-dimensional generalization of the
phase representation of reference 4. The essen-
tial assumptions made in this analysis are that
the elastic amplitude has the analyticity due to
Mandelstam and that the phase of the elastic
amplitude has the simplest analyticity in the
momentum-transfer variable. This analysis
proves also that P(t) in (1) is analytic everywhere
except for the t cut and has no zeros except at
infinity.
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Several searches have been made for the decay
Z+- p+@ of which two'&' claim negative results
and two3~4 claim positive results. All of the pre-
vious attempts were done in emulsions. In this
Letter we present evidence of a Z+ —p+y decay
where the Z hyperon was produced by a K mes-
on at rest in a hydrogen bubble chamber.

As part of our study of stopping K mesons in
the Alvarez 15-in. hydrogen bubble chamber,
we have measured all Z+ hyperons which were
produced and did not decay into a light track.
The events were found by a double general scan
in which all E mesons entering a specified fi-
ducial region were followed. The events were
processed through a combined program of PANG
and KICK called PACKAGE, and then the output
was sorted by an EXAMIN program.

In our event, the K came to rest and produced
a Z+ which decayed in flight. The proton came
off backwards and stopped in the chamber. This
type of configuration could be due to either

~P + v'.

The unfitted data for the tracks are shown in
Table I.

The near colinearity of the Z" and v, and the
close agreement of the beginning momentum of
the K with the value of momentum obtained by
range, strongly suggest that one should try to
fit the production of the Z+ assuming the K
stops. This fit is a 3-constraint fit since the
magnitude of the Z+ momentum, from curva-
ture, is too poorly determined to be used in the
fitting. After propagating the Z to the decay
vertex, we did a 1-constraint fit. The results
for our three measurements are shown in Table
II. As an additional check, we tried fitting the
over-all event as a 4-constraint fit on another
measurement and obtained

g'(2++ p+ ~') =147.54, g'(Z+-p+y) =0.59.

We now consider various interpretations of
the event as a Z -P+~ decay which would give
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