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tribution as the Fourier transform of the charac-
teristic function can be generalized in the present
case, using probability functions and characteris-
tic functionals. ' The methods developed here are
thus adequate to determine the quantum mechani-
cal density matrix, provided all the correlation
functions are given. "

It is a pleasure to thank Professor Emil Wolf
for introducing me to the subject and for his in-
terest in this work. Mr. C. L. Mehta and Mr. N.
Mukunda made several helpful suggestions.

'For a comprehensive review, see M. Born and

E. Wolf, Principles of Optics {Pergamon Press, New

York, 1959), Chap. X.
See L. Mandel (to be published), for a systematic

account.
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coordinate representation
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~For a general theory of representation by an over-
complete family of states, see J. R. Klauder {tobe
published) .

All strange representations of the infinite canonical
ring are deliberately ignored here.

SE. M. Purcell, Nature 178, 1449 (1956). L. Mandel,
Proc. Phys. Soc. (London} 71, 1037 {1958};74, 233
(1959). See also reference 2.

I. E. Segal, Com. J. Math. 13, 1 (1961). See also
E. Hopf, J. Rat. Mech. Anal. 2, 587 (1953). These
have to be generalized here by admitting indefinite
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OThe only case where all correlation functions are
known is for the important but familiar example of the
blackbody radiation. We hope that this circumstance
is not time independent!
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The purpose of this note is to describe an ex-
tension of the theory of the two-stream plasma
ion wave instability and an application of the the-
ory to the physics of the ionosphere. We shall
include in the theory the effect of a magnetic field
and also the effect of collisions with neutral par-
ticles. Both of these effects can be important in
the ionosphere. We find that the qualitative and
quantitative predictions of the theory are in agree-
ment with the observed characteristics of a cer-
tain type of irregularity found in the equatorial
ionosphere. These are often referred to as "equa-
torial sporadic-E" irregularities. Similar irregu-
larities often appear in the polar ionosphere dur-
ing auroral displays; it seems very likely that
these too are caused by the two-stream instability.

The theory of the so-called two-stream plasma
wave instability has been studied by a number of
authors in the past few years. ' A frequently con-
sidered case is that of a collisionless plasma with
no imposed magnetic field in which the ions and
electrons have Maxwellian velocity distributions.
The velocity distribution of the electrons is taken
to be shifted with respect to that of the ions by an

amount Vd, the mean relative drift velocity. For
equal ion and electron temperatures, one finds
that longitudinal ion waves will grow in the plasma
if Vd is greater than 0. 926 Vth, where Vth= (2RT/
m )".e

During the day at the magnetic equator, a strong
Hall current, called the "electrojet, " flows in the
direction perpendicular to the earth's magnetic
field at an altitude of about 100 km in the iono-
sphere. ' It has long been known from radio sound-
ings of the ionosphere that there are irregularities
of ionization density associated with this current. '
Recently these irregularities have been studied in
much more detail using VHF radio scattering
measurements. ' The principal motivation for the
present study was to see if a plasma rnicroinsta-
bility could be the source of these irregularities.

In this note we can only outline the derivation of
the results. The full details and more numerical
results will be given in a later paper. We assume
the unperturbed electron and ion velocity distribu-
tions to be Maxwellian. The mean electron veloc-
ity is taken to be perpendicular to the magnetic
field and to have a magnitude Vd, whereas the
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where Te and T; are the electron and ion tempera-
tures, and h is the Debye shielding length (KTe/
4wNe')"' Here we. have assumed only a single
type of ion to be present. For a mixture of ions,
one simply replaces the second term in (1) by a
weighted sum. The function F(X) is defined (sup-
pressing the e and i subscripts) by

F (X) = [(X - fy)Z+f]/(I - yZ), (2)

where J is the Gordeyev integral of the complex
argument X-ig, i.e. ,

g=f exp[-i(X-ig)f - p 'sin'n sin'(244&t)
0

- (;t') cos u yN.

In (1)-(3), the functions 8, g, p, and g~ are the
normalized oscillation frequency (~), collision
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mean ion and neutral-particle velocities are as-
sumed to be zero. The perturbation in the charged
particle distribution functions is taken to be wave-
like, of the form exp[i(&ut - k r)], where the wave

vector k is real, but ~ may be complex. We de-
fine n to be the angle between k and the magnetic
field B and P to be the angle between k and Vd.

Starting with these assumptions, one obtains
the dispersion equation relating k and ~ from
Boltzrnann's equation and Maxwell's equations.
When collisions are neglected, this can be done
in a fairly straightforward way using the method
of Bernstein. ' We are interested in situations
in which collisions with neutral particles are not

negligible, however. In many problems one can
adequately include the effects of collisions by
replacing the collision term in Boltzmann's equa-
tion by a simple relaxation term which causes the
distribution function to decay toward a uniform
Maxwellian distribution (the mean-free-path
approach). However, this approximation has a
defect which is serious in our problem, ' i.e. , the
number of particles is not conserved locally, but

only on the average. '~7 To avoid this difficulty it
is necessary to modify the relaxation term so that
it affects only the velocity distribution of the par-
ticles and not their distribution in space.

The resulting approximation appears to be suf-
ficiently accurate for our purposes. The proce-
dure for deriving the dispersion equation is con-
siderably complicated by the collision terms.
However, following the method of Dougherty, v

one finally obtains the following result:

F (e -g )+(r /T )F (e )+fa'u'. =0,. .
e e e e i i i

frequency (v), gyrofrequency (0), and electron
drift velocity component in the k direction (Vd
xcosP), respectively. These are defined by

k I2KT

wave phase velocity
particle thermal velocity'

(4)

(8 ti e, t

wavelength

2mx mean free path'

n . (m
e, i k I2KT .)

wavelength

2vx gyroradius'
(6)

=V cosPi

drift velocity
electron thermal velocity

When &e is 0, the above results for the dispersion
equation, apart from notation, agree with those
recently obtained by I ewis and Keller. '

In general, of course, it is difficult to solve (1)
for ~ as a function of k. Therefore, in this note
we shall consider only the special case appropriate
to the ionosphere in the altitude range 100-110
km. For comparison with experiment, we are
interested in wavelengths of 1 and 3 meters. 4

For the other parameters we shall take Te = Ti
=210'K, pe =3x10' sec ', p, =10' sec ', Be =5
x10' sec ', Q; = 80 sec ', and N = 10' electrons/
cc, and we shall assume the ions to be mostly
NO . The electron thermal velocity (2KT/me)"'
is 80 km/sec, and the ion thermal velocity (2KT/
mf)"' is 340m/sec. From these values we obtain
the following useful inequalities: O'A'«1, @i
«g;, and p~ » 1,g~. Using these various inequali-
ties, (1) can be simplified to

1 PZ(p. ) 1 (I-6)p ~(p )
e e

I +ig.Z (p. ) I +i (1- 6)(y /cosu)Z(p )
g e e
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where p; = -8i+iq;, pe = (ge - 8e+ ice)/cosa, and
5 is the small quantity I/2ye'. Z is the plasma
dispersion function tabulated by Fried and Conte, '
l. e. ,

Z (w) = 2i exp(-w')Jt exp(-i')di (9)

for all values of M) in the complex plane. In the
limit as cosn-0, (6) can be simplified still fur-
ther, yielding

1+p,Z(p, ) 5(g -8 +if )i i e e e
I i+y.Z(P. ) ( —8 +id/

(10)

Using the data given above, we have solved (10)
graphically for k equal to 2v m ' and 2v/3 m '.
In the first case, g =0.06, y =0. 5, and 5=5
x10 '. One finds that the condition for critical
stability is 5e —6)e

——2. 55 5ge ——V. 6 x 10 and 9 .

= (mi/me)"'8e = 1.19 (purely real). Thus g = 5. 85
x10 ', which corresponds to a component of drift
velocity in the direction of k of 470 m/sec. The
above value of 6)~ corresponds to a phase velocity
of 405 m/sec. A drift velocity greater than 470
m/sec will cause waves with this wave vector k
to grow (&u will have a negative imaginary part).

For a wavelength of 3 meters, ge =0. 16, g; =1.5,

and 5 = 5. 5x10 4. The critical conditions are 9,
= 1.10 and (e = 5. 12 x 10 ', corresponding to a
phase velocity of 375 m/sec and a drift velocity
of 410 m/sec.

For a collisionless plasma with no magnetic
field, the conditions for critical stability are $e
=8i =0.926 (assuming h'k'=0). It can be seen
that the magnetic field and the collisions do not
greatly alter the frequency of oscillation (i.e. ,
the value of 8,), but they drastically alter the
magnitude of the relative drift velocity required
for instability. It is clearly quite easy to excite
waves that move in directions nearly perpendicu-
lar to the magnetic field. The drift velocity need
only be somewhat greater than the ion thermal
velocity (i.e. , the velocity of sound in the plasma),
not the electron thermal velocity as in the colli-
sionless, field-free case.

One can show that (10) is applicable as long as
I cosa I is somewhat less than ge/Pe = ve/Qe = 6
x10 '. For departures from orthogonality greater
than this, one must use (8). The results of some
calculations for propagation directions departing
slightly from orthogonality are shown in Fig. 1.
In this figure me have plotted the critical drift
velocity component (Vd cosu) as a function of the
angular departure from orthogonality measured
in degrees.
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The electron drift velocities in the equatorial
electrojet are thought to reach a maximum value
of the order of 500-600 m/sec, but this is only a
fairly rough estimate. The ions move only
slightly with respect to the neutral particles. On
the basis of the theory described here, one would
expect plane wave irregularities with wavelengths
of 1 and 3 meters to be formed in the electrojet,
since the minimum critical velocities are less
than 500 m/sec. These waves should propagate
only in directions which are within a degree or
so of being orthogonal to the magnetic field. The
angular spread should be somewhat less for the
shorter wavelength; the spread for both wave-
lengths should increase slightly as Vd increases.
The propagation vector should always have a com-
ponent in the direction of Vd (i. e. , P & 2v). The
phase velocity of the waves should be approxi-
mately the speed of sound in the plasma (about
340 m/sec). Further, as the drift velocity in-
creases from zero, the 3-meter waves traveling
in a particular direction should be excited some-
what before the 1-meter waves, because of the
different threshold velocities.

The radar backscatter measurements at the
equator at 50 and 150 Mc/sec are in complete
accord with these predictions of the theory, and
almost all of the above characteristics have in
fact been observed. ' There would seem, then,

FIG. 1. The critical drift velocity Vd cosP (the ve-
locity required for vanishingly small growth) as a func-
tion of the angular departure from orthogonality of k
{the wave propagation vector) and 8 (the magnetic field).
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to be little doubt that at least one type of sporadic-
8 irregularity at the equator is caused by the two-
stream mechanism described here.

Radar observations indicate that much the same
sort of irregularity is also formed in the polar
ionosphere during auroral displays. " It is known

that a current which may be even stronger than
the equatorial electrojet flows normal to the lines
of force at these times, "and so one would expect
the same instability mechanism to be effective.
With a sufficiently strong current, irregularities
with quite small wavelengths could be excited,
and the deviation from orthogonality of these waves
could be somewhat greater than at the equator.
It is tempting to think that many of the observed
types of irregularities in the ionosphere whose
origins have long been explained may be caused
by various plasma microinstabilities.

I would like to thank Dr. K. L. Bowles and
Dr. R. Cohen for stimulating my interest in this
problem and for many helpful comments. It is
a pleasure to acknowledge many useful discussions
with Dr. J. P. Dougherty concerning the method
of including the collision effects. I am also grate-
ful to C. Romero for help with the numerical cal-

culations�.
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The theory of hydrodynamic stability has been
most successful in the linearized approximation
where the aim is to discover the conditions under
which a flow will first become unstable. ' The
origin of the instability is considered to result
from the amplification of an initially infinitesimal
disturbance which grows with time as expgt. The
criterion for instability is that 0 should have a
positive real part, otherwise the flow is consid-
ered to be stable. On the other hand, it is known
experimentally that in some cases the disturbances
do not amplify continuously as expgt, but approach
a steady, finite amplitude after a passage of time.
The calculation of this steady amplitude, involving
as it does the full nonlinear set of hydrodynamical
equations, presents a formidable mathematical
problem. Landau first suggested'~' from very

general considerations that the equilibrium am-
plitude of such a disturbance must increase as
(R -Rc)"', where R is some suitably defined
"Reynolds number, " beyond the onset of instability
at Rc. Quantitative visual observation of a three-
dimensional vortex is very difficult, and as a
result the experimental consequences of this law
have been explored by torque measurements on
flow between rotating cylinders (Couette flow).
This method suffers from the necessity to make
measurements which integrate the effects over
many wavelengths of the disturbance. In this
Letter a new technique is described which allows
direct measurements of the amplitude of the-dis-
turbances envisioned in the theory; and the meas-
urements confirm Landau's equation for the varia-
tion of the equilibrium amplitude.
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