VoLUME 10, NUMBER 7

PHYSICAL REVIEW LETTERS

1 APRIL 1963

52, 337 (1962).

L. Mandel, J. Opt. Soc. Am. 52, 1337,1408 (1962).

0. S. Heavens, Suppl. Appl. Opt. 1, 4 (1962).

'W. Bothe, Z. Physik 41, 345 (1927).

%E. M. Purcell, Nature 178, 1449 (1956).

10, Mandel, Proc. Phys. Soc. (London) 72, 1037
(1958); 74, 233 (1959).

HE, Wolf, Proc. Phys. Soc. (London) 76, 424 (1960).
2c, T. J. Alkemande, Physica 25, 1145 (1959).

1BE, Wolf, Proceedings of the Third Symposium on
Quantum Electronics, Paris, February, 1963 (to be
published).

141,, Mandel, Proceedings of the Third Symposium on
Quantum Electronics, Paris, February, 1963 (to be
published).

15R, J. Glauber, Proceedings of the Third Symposium
on Quantum Electronics, Paris, February, 1963 (to
be published).

161, Mandel, J. Opt. Soc. Am. 51, 797 (1961).

"Since this was written, E. C. G. Sudarshan [Phys.
Rev. Letters 10, 277 (1963)] has demonstrated that
the semiclassical and the quantum mechanical de-
scriptions are completely equivalent to each other as
long as no nonlinear effects are considered.

EQUIVALENCE OF SEMICLASSICAL AND QUANTUM MECHANICAL DESCRIPTIONS
OF STATISTICAL LIGHT BEAMS

E. C. G. Sudarshan
Department of Physics and Astronomy, University of Rochester, Rochester, New York
(Received 1 March 1963)

With the advent of the laser, attention has been
focused on the problem of the complete descrip-
tion of the electromagnetic field associated with
arbitrary light beams. The classical theory of
optical coherence! works almost exclusively with
two-point correlations; and this theory is adequate
for the description of the classical optical phenom-
ena of interference and diffraction in general.
More sophisticated experiments on intensity in-
terferometry and photoelectric counting statistics
necessitated special higher order correlations.
Most of this work? was done using a classical or
a semiclassical formulation of the problem. On
the other hand, statistical states of a quantized
(electromagnetic) field have been considered re-
cently, 3 and a quantum mechanical definition of
coherence functions of arbitrary order presented.
It is the aim of this note to elaborate on this defi-
nition and to demonstrate its complete equivalence
to the classical description as long as no non-
linear effects are considered.

We begin with an outline of the analytic function
representation? of canonical creation and destruc-
tion operators. If a and at satisfy the relations

[a,aT]=l,

every irreducible representation is equivalent to
the Fock representation in terms of the states
Yn), satisfying

alagt)=ny®);  (Wom),4t)=0o .

The matrix elements of ¢ and aT in this represen-

tation are

Gon)apo)=ins

Won),aTy@)) = + l)wom,n +1°

One could, however, introduce an overcomplete
set of eigenstates of the destruction operator
given by

1retf) =

© n
lz) =exp(-} 1z IZ)nZ:)O GZ!—)‘-,,zzp(n), (1)
satisfying

alz)=zlzy; (z laT=z*(z Iy (zlz) =1,

for every complex number z. These states are
all normalized but not orthogonal®; they are com-
plete in the sense that they furnish a resolution
of the identity

1=(1/n)[frdrd6 | ret?) (ret?].

More generally,
d9.  i6y, 6, -r2 & ¥ g
fzntre Y(retll=¢e néoﬂ! Y)Yt ().

(2)

We can make use of the overcompleteness® of the
states to represent every density matrix,

o= 5 5 ptnweyten,
n=0n=0
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in the “diagonal” form

, inr1)ve 5 n+n’ ds exp[1’2+i(n'-ﬂ)9]|7’€i9><7’€i9|;' . (3)
p_)lg()néop(n,n ) (ﬂ+l’l’)! 9 ) 2m =0
This form is particularly interesting since if quantum mechanical density matrices. Hermitic-

0=(at)*a" be any normal ordered operator (i.e.,
all creation operators to the left of all annihilation
operators), its expectation value in the statistical
state represented by the density matrix in the
“diagonal” form

p=[d%2¢@)iz)(z] (4)

is given by

tr{pO} =tr{p(at)ak}=[d% ¢ (&) e *)zH. (5)

This is the same as the expectation value of the
complex classical function (z *MzH for a probabi-
lity distribution ¢ (z) over the complex plane. The
demonstration above shows that any statistical
state of the quantum mechanical system may be
described by a classical probability distribution
over a complex plane, provided all operators are
written in the normal ordered form. In other
words, the classical complex representations’
can be put in one-to-one correspondence with

[<e]

w Plnh Do 1)ve
¢({3}):r/\1 nyt0n, 750 (nx+nl\’)!(2m’/\)

Consequently the description of statistical states
of a quantum mechanical system with an arbitrary
(countably infinite) number of degrees of freedom
is completely equivalent to the description in terms
of classical probability distributions in the same
(countably infinite) number of complex variables.
In particular, the statistical states of the quantized
electromagnetic field may be described uniquely
by classical complex linear functions on the clas-
sical electromagnetic field. This functional will
be “real” reflecting the Hermiticity of the density
matrix; and leads in either version to real ex-
pectation values for Hermitian (real) dynamical
variables.

Several additional remarks are in order. First-
ly, since the states |{z}) are eigenfunctions of
the annihilation operators, the analogous states
for a quantized field are eigenfunctions of the
positive-frequency (annihilation) part of the field.
The corresponding classical theory should then
work with positive-frequency parts of the classi-
cal field; but this is precisely what is involved
in the concept of the (classical) analytic signal.*
Secondly, while thermal beams are usually rep-
resented by Gaussian classical probability func-
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ity of p implies that ¢(z) is a “real” function in
the sense that ¢*(z*) = ¢ (2), but not necessarily
positive definite.

These considerations generalize in a straight-
forward manner to an arbitrary (countable) num-
ber of degrees of freedom, finite or infinite.”
The states are now represented by a sequence of
complex numbers {z }; and the Fock representa-
tion basis is labeled by a sequence of non-negative
integers { n} and density matrices by functions
of two such sequences p({n}, {#’}). Any such
state can be put into one-to-one correspondence
with classical probability distributions in a se-
quence of complex variables ¢ ({z}) such that the
expectation value of any normal ordered operator
0({at},{a}) is given by

tr{O({a f}, {a})p} I Ja*= 0z*} {eho (e,
where the “real” function ¢ ({z}) is given by

9

81’/\

n, +ny’
exp[r}\za—i(nk'—n/\)@k];(' ) e 5(1’,\)} . (6)

tions corresponding to a density matrix diagonal
in the occupation numbers {z} given by the grand
canonical ensemble for the blackbody radiation,
there are other probability functions! A particu-
lar one may not be diagonal in the occupation
number sequence {n} and this implies, in accord-
ance with Eq. (6), that not all phase-angle se-
quences {6} have equal weight. In such a case
the expectation values of operators with unequal
number of creation and destruction operators
need not all vanish. We note in passing, that
Eq. (6) for ¢({z}) in terms of p({n}, {n}) can be
inverted to yield
22 X *y

2 -z, I* A A
pn}, {n'}) =Hj‘d z o({z)e A —r=TF—
A (n tn 1)v

PPN

If we do this for the Gaussian functions, we ob-
tain the Bose-Einstein distribution, diagonal in
the occupation number sequences corresponding
to the equal weightage of all phase angles. It is
worth pointing out that this result reproduces the
Purcell-Mandel derivation® for photoelectric
counting statistics. The method of inverting the
expectation values to obtain the probability dis-
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tribution as the Fourier transform of the charac-
teristic function can be generalized in the present
case, using probability functions and characteris-
tic functionals.® The methods developed here are
thus adequate to determine the quantum mechani-
cal density matrix, provided all the correlation
functions are given. *°
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The purpose of this note is to describe an ex-
tension of the theory of the two-stream plasma
ion wave instability and an application of the the-
ory to the physics of the ionosphere. We shall
include in the theory the effect of a magnetic field
and also the effect of collisions with neutral par-
ticles. Both of these effects can be important in
the ionosphere. We find that the qualitative and
quantitative predictions of the theory are in agree-
ment with the observed characteristics of a cer-
tain type of irregularity found in the equatorial
ionosphere. These are often referred to as “equa-
torial sporadic-E” irregularities. Similar irregu-
larities often appear in the polar ionosphere dur-
ing auroral displays; it seems very likely that
these too are caused by the two-stream instability.

The theory of the so-called two-stream plasma
wave instability has been studied by a number of
authors in the past few years.! A frequently con-
sidered case is that of a collisionless plasma with
no imposed magnetic field in which the ions and
electrons have Maxwellian velocity distributions.
The velocity distribution of the electrons is taken
to be shifted with respect to that of the ions by an

amount _Vd, the mean relative drift velocity. For
equal ion and electron temperatures, one finds
that longitudinal ion waves will grow in the plasma
if V4 is greater than 0.926 Vi, where Vi = (2KT/
my) V2.

During the day at the magnetic equator, a strong
Hall current, called the “electrojet,” flows in the
direction perpendicular to the earth’s magnetic
field at an altitude of about 100 km in the iono-
sphere.? It has long been known from radio sound-
ings of the ionosphere that there are irregularities
of ionization density associated with this current.?®
Recently these irregularities have been studied in
much more detail using VHF radio scattering
measurements.* The principal motivation for the
present study was to see if a plasma microinsta-
bility could be the source of these irregularities.

In this note we can only outline the derivation of
the results. The full details and more numerical
results will be given in a later paper. We assume
the unperturbed electron and ion velocity distribu-
tions to be Maxwellian. The mean electron veloc-
ity is taken to be perpendicular to the magnetic
field and to have a magnitude V;, whereas the
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