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variable for the second and the third resonance
is made plausible by the fact that a smooth curve
can be fitted to the experimental points in Fig. 2.

The main resonance is seen to be of different
character. This resonance, however, has been
explained in the theory by Herlofson, and, as a
particular solution, in the theory by Gould.

Following Herlofson and taking into account the
finite plasma radius and the surrounding glass
walls, we can compute (~p')/~' for the main
resonance in a homogeneous plasma column.
The results of this computation are compared
with the measured values of (~~') /&u' in Table I,
and the agreement is found to be good.
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Table I. Measured and calculated values of (~p )/~ for the main resonance.

f (GHE)
Measured Computed Measured

1.9
Computed

32
20
16
12

8

2.90
2. 79
3.02
3.06
2.98

2.62
2.80
2.91
2.95
3.28

2.79
2.99
3.17
3.16
3.13

2.75
2.98
3.04
3.07
3.37

RESONANCE OSCILLATIONS IN A HOT NONUNIFORM PLASMA

Peter Weissglas
Swedish State Power Board, Vallingby, Sweden

{Received 12 February 1963)

In a previous paper, ' the Boltzmann-Vlasov
equation was taken as a starting point for a study
of longitudinal plasma oscillations. The electron
density in the steady state was assumed to be uni-
form and the plasma enclosed between two per-
fectly reflecting, infinite plane walls. A series
of resonances was found for frequencies higher
than the plasma frequency &p. Of these reso-
nances, only odd-order ones could be excited by

external fields. It was shown that the hydrody-
namic equations give correct results when the
applied frequency is close to ~~. For higher fre-
quencies, details in the velocity distribution be-
come important which cannot be described by a
pressure term. Gould, ' using the hydrodynamic
equations, has found that in the cylindrical case
one obtains a resonance of a somewhat different
kind at a frequency ~~/v'Q in addition to what ap-
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pears in the plane case.
Dattner has recently combined his previous

measurements with a determination of the elec-
tron density. Surprisingly, he found several
resonances for (~p') )~', where {u~') is the
measured mean square plasma frequency and a
the applied frequency. The present note attempts
to throw some light on these and other discrepan-
cies between theory and experiment by consider-
ing the effects of a nonuniform electron density
in the steady state.

According to Weissglas, ' the resonances can be
associated with standing longitudinal waves in the
plasma. If the plasma has a high-density core,
these waves will be damped out in about one Debye
length as soon as the local plasma frequency ex-
ceeds the applied frequency. Therefore the os-
cillations will effectively take place in two regions
near the walls. Each of these regions is much
thinner than the total plasma, thickness and has
an average density substantially lower than the
volume average for the whole plasma. As a re-
sult we would expect the resonances to appear at
a higher density for a given applied frequency and
to be more widely spaced than would be the case
if the density were uniform. The latter effect
arises because the spacing is essentially deter-
mined by how large a fraction of the oscillating
region an average electron travels in one period. '

We will now use the hydrodynamic equations
and a simple model for the density variation to
examine the case analytically. Linearizing from
the outset, we have

sp/et +div(pv) = 0,

BV eP(I~ 8P
p,—= — "E -—E, - W' gradp,'at m m

dlvE = ep/f 0,
-

a,nd, in addition, for the steady state,

,+ (o. —4q cos2x)yldy
4dx'

-4p, (1+e) 3p, 'e(I +2e)
p, (x) p, '(x) (7)

where the source term is excluded, and

l. ~ 0u=, , +1, q= . . . y=v p '. (8)
v W 4~'g' ' ~ 0

For large q values (in Dattner's experiments we
have roughly 10& q& 1000), a first approximation
to the eigenvalues of (7) is obtained by neglecting
the last term. We then have a Mathieu equation, '
and the solutions compatible with the condition of
perfectly reflecting walls are ce2„+i and sep .
Of these only the first kind can be excited by
external fields. We now distinguish two Cases,
e « I/v'q and e» I/Eq. In the first case the reso-
nance condition is determined by the details in
the outer boundary layers, and by first-order
perturbation theory we get the estimate

1 t'"~ce (x, q)'
n i 2n+1

cv 2q J yzg cos xp0

= constq "'+O(q "'), n = 0, 1, 2, ~

ternal field, i.e. , by the nonzero solutions of the
homogeneous part of Eq. 5. We now choose

po(x) = po(1 + e + cos2x), 4) (x) = (u 0 (1 + E + cos2x),

(6)

where the small number e has been included to
avoid difficulties from an infinite static electric
field at the boundary. Normalizing all lengths to
make the walls fall at x =~-,'v, Eq. (5) can be
written

E, = - (W'm/e) gradpgp, .
The periodic solutions to Eqs. (1)-(4) in plane
geometry (-l. ~x ~ L) satisfy

d'(p v ) 1 dp d(p0v) (u'-u p'{x)
p v

po &x 0x

2(deP

, z(f.).

(4)

(u '/ru '=[(4n+3)/v2jq '+0(q '),
n p0 (10)

where the asymptotic expression for the eigen-
values of the Mathieu equation has been used. '
With a uniform density, the resonance condition
is in our notation

In the second case we can completely neglect the
last term in Eq. (7), which physically originates
from the influence of the static field to get

Natural modes of oscillation are given by the non-
trivial solutions in the absence of an applied ex-

(u '/(u '=1+~(2n+1)'q '.
n p0

Comparing Eqs. (9), (10), and (ll), we see that
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both (9) and (10) allow several resonances below
For large q values the spacing of the reso-

nances according to Eqs. (9) and (10) is much

larger than given by (11), as is also the case with

the experimental results. It is therefore felt that
the phenomenon of resonance oscillations can be
fairly well explained on the basis of the present
theory, although much needs to be done on calcu-
lations using a realistic density variation and an
appropriate geometry before numerical compari-
son with experiment is possible. The unrealistic
density variation we have chosen gives a too low

value for the density in the oscillating region.
This fact may explain why Eq. (10) gives unrea-
sonably large values for &up/~ at resonance.
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NONELASTIC TIU&1SITIONS IN CHROMIUM

M. E. de Morton*
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Neutron diffraction measurements' have es-
tablished that the second-order transition in Cr
observed on cooling below 40'C occurs through
the onset of antiferromagnetic ordering with
magnetic moments parallel to antiphase-domain
boundaries. A further change in the reflected
neutron intensity found in Cr single crystals at
lower temperatures, i. e. , -120'C'~ a.nd -160'C,
and termed the spin-flip transition T~ +, occurs
when the direction of magnetic moments spon-
taneously rotates through 90'.

The transition at -40 C, the Noel temperature
T, is accompanied by a sharp peak (5=3x10 ')N'
in internal friction and a precipitous trough in
the dynamic Young's modulus E when measured
at resonant frequencies. 4&' A small trough in
E is a,iso observed at -150'C. On the other hand,
low-frequency (1 cps) internal friction measure-
ments' on polycrystalline Cr to -70'C show con-
trasting results in that below T& a marked, con-
tinuous increase in logarithmic decrement 5 oc-
curs; moreover, damping in this region is strong-
ly amplitude dependent. Dislocation damping was
absent in these measurements due to strong im-
purity atom interaction.

Recent internal friction measurements con-
tinued down to -196'C are shown in Fig. 1 and
indicate the magnetomechanical damping re-
ferred to above disappears below about -150 C,
the spin-flip transition temperature. Vibration
frequency measurements f made concurrently
with 5 and shown in Fig. 2 indicate that the dy-
namic shear modulus 6, which is proportional
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FIG. 1. Damping of chromium as a function of tem-
perature (frequency —1 cps).

to f', goes through a peak at T& and below T~ +
increases very rapidly. These measurements,
which show hysteresis, were made on annealed
polycrystalline Cr of 99.98 $ purity and grain
size of -130 p, in a torsional pendulum at 0. 1-
mm pressure of helium. The magnitude of the
magnetomechanical damping was found to in-
crease with increasing grain size.

The nonelastic behavior of Cr below T& has
been interpreted on the basis of an antiferromag-
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