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value calculated from molecular field theory with

J, = 0 and J,= -1.76 k is 82'K, whereas with J,
=-1.3k and J,=-l. 76k a 8 value of 97'K is ob-
tained. From paramagnetic resonance measure-
ments on dilute solid solutions of MnF, in ZnF„
Owen, Brown, Coles, and Stevenson" have con-
cluded that J, is ferromagnetic and equal to (0. 2

+ 0. 1)k which within experimental error is con-
sistent with our limiting Weiss 6 but not with the
value of J, =-1.3k inferred from the low-tempera-
ture values of y~~. The reason for this discrepancy
is not clear.
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The purpose of this Letter is to present a new

approach to the problem of ferromagnetism in a
metal. A correlated wave function for the elec-
trons in the 3d band is proposed as approxima-
tion to the ground state. The expectation value
of the energy is evaluated by diagram techniques.
The simplest example of a face-centered cubic
structure (whose density-of-states curve is
parabolic at the bottom and has a, peak at the
top) is discussed. Under these assumptions
the arguments show that the ferromagnetic state
is lower if the band is nearly full, whereas the
nonmagnetic state has the lower energy if the
band is nearly empty.

The main attempt so far to explain ferromag-
netism in metals is based on the collective elec-

tron theory of ferromagnetism, ' in which both
the magnetic and the nonmagnetic ground states
are assumed to be antisymmetrized products of
Bloch functions. The expectation value of the
energy in the nonmagnetic state contains a large
term which is due to the repulsion of two elec-
trons of opposite spin at the same lattice site.
Slater, in particular, pointed out that this term
should be reduced by considering correlated
wave functions before the effects of exchange
are discussed. The collective electron theory
fails especially in the limit of large spacing be-
tween the lattice sites, a situation comparable
to that of the relatively tight 3d levels in the
transition metals.

The present model is an attempt to deal with
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fy'(x - g,) (p(x - g,)dx = 5g g .

The restriction to%annier functions is made in
this Letter in order to bring out more clearly
the way in which the correlation between elec-
trons of opposite spin is achieved. The gen-
eralization to nonorthogonal orbits is feasible,
and the present theory is viewed as an approxi-
mation which is valid for small overlap between
two orbits y(x -g,) and rp(x -g,) belonging to dif-
ferent sites in the lattice. Bloch waves yk(x)
are constructed by forming

y (x) = I. ~+ exp(ikg) y(x —g) .
g

(2)

Each of these wave functions is to be multiplied
with a. spin function, indicated by an arrow, t or

as index. Corresponding to cp(x —g), there is
a Fermion creation operator a +, in the usual
manner; and corresponding to gk(x), there is a
Fermion creation operator a&+, with the relation

this particular difficulty. The correlated wave
function 4 is obtained from the antisymmetrized
product 4 of Bloch functions by simply eliminat-
ing those parts in 4 in which two electrons of
opposite spin happen to be at the same lattice
site.

Consider a lattice of I. sites which are num-
bered by an index g. To each site belongs, for
a given spin, only one orbital p(x -g) of the Wan-
nier type

(2) now becoming

a + =2 ~'g exp(ikg)a +.

The wave function 4 is represented by

{k)'kt {~j ~& 0' (4)

where 4o is the vacuum. The sets {k]and {z]ex-
tend over the appropriate regions in reciprocal
space. These regions are, in general, the in-
side of some Fermi surface, and it may well be
that the Fermi surface 8 for the set {k)with spin
up does not coincide with the Fermi surface Z
for the set {v]with spin down. The total number
N of electrons described by 4 does not have to
be in any simple relation to the number L of lat-
tice sites. Indeed, if one takes the liberty of
grouping the 4s electrons in Ni with the effective
periodic potential, one is left with a fractional
value of N/f. for the Sd band. If there are more
electrons than lattice sites, the whole formalism
can be written in terms of holes instead of elec-
trons, so that one may always assume X ~ I..

The correlated wave function 4' is defined by

%=II [I-(1-q)N N ]4, (5)
gt gt

where N =a +a . As I.-~, the function 4'

becomes an eigenfunction of the operator 8'
N . For a given antisymmetrized

product 4, the value of q is to be considered
as a function of (W).

By a straightforward computation, the norm of
4' is shown to be

(4 ~4) =1+ Q
(q2 —I)

m=1

W(g -g ) "W(g -g )
1 1 1 m ~(g -g )".~(g -g )1 1 1 m

m 1 m m

where the kernels W(g) and &u(g) are given by

Similar but somewhat more complicated expres-
sions can be obtained for (4 [a +ak i 4'), etc Of.
particular interest is the expectation value

(W) = —,'q. a In(4 [4)/aq. (8)

Expressions such as (8) cannot be evaluated
directly- However, a fairly simple diagrammatic

1 1
W(g) = —Q exp(ikg), a(g) = —g exp(i~g) (7).

ACs &Cz

analysis can be used. Each of the m t permuta-
tions which occur in expanding the determinants
of (8) can be viewed as the result of performing
the appropriate cycle permutations. Each cycle
is represented by an oriented polygon whose
vertices are labeled by the numbers of the cycle
in their correct order. There are two kinds of
polygons, one for spin-up particles and one for
spin-down particles. Corresponding vertices,
i.e. , vertices which are labeled by the same
number, are connected by a dashed line to com-
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where A stands for the contribution of a partic-
ular linked cluster of order v. The contribution
A of each linked cluster is proportional to L.
Moreover, Av is proportional to (N/L)v+ . For
instance, (+=rpNINi/L from the term v =1 in

(9). All expectation values of interest can, there-
fore, be computed with good accuracy for N c&L.
(In the 50-50 alloy of Ni and Cu, which is still
ferromagnetic, one has N/L &1/10. )

The occupation probability Nkl =(akI+akt) is
given to second order in N/L by

I -(1 q)'n& f-or kCS,
A

kI (1- q)'n&n& for k+S, (10)

where nI ——NI /L and ni =Nl /L. The average
number of particles inside the Fermi surface is
reduced by a factor [I —(1 —q)2ni J. In the special
case g=0, it turns out that Nk~ =1-n~ for PCS
quite independently of the magnitude of n~ and nl .
For N = L and g = 0 one has, therefore, Nk~ =Nk~ =

&

over the whole Brillouin zone, independently of
the choice of 4, in agreement with the Heisenberg
model of ferromagnetism.

It is instructive to apply these results to the
following example. The Hamiltonian is given by

H=Q E (N +N ) C+g NN
k k k& kl g g) gl

The first part of H arises from solving Schroding-
er's equation for a single electron in the effective
periodic potential of the lattice. The second part
describes the repulsion between two electrons of
opposite spin which happen to be in the same orbit
around a particular lattice site. All those inter-
actions whose matrix elements involve integrals
over orbits at different sites, and this includes
the interaction which is associated with the ex-
change integral, are grouped with the effective
periodic potential.

If the crystal potential has a nonvanishing ma-
trix element c only between nearest neighbors,

piete the diagram. The contribution of each dia-
gram to (4 )4) is easily found.

The subdivision of a diagram into linked clusters,
the assignment of a symmetry number to each
linked cluster, and the counting of equivalent dia-
grams is done in the usual manner. The result
1s

(4 [4) =exp
(q' —1)

@=1

the function Ek is given for an fcc lattice by

E = -4e(cosak, cosak, + cosak, cosak~+ cosak~ cosak, ),

(12)

with respect to cubic axes. For ~ &0 the bottom
of the band is at F. = -12 e, where the density of
states dn/dE as a function of energy E vanishes
like (E+ 12 e)v2. Nea, r the top of the band at E
=4m the density of states ha.s a peak like -log(4e
- E)v . The expectation value (H)„can be obtained
for 4' in the nonmagnetic state by minimizing (H)
with respect to q which is then found to be (1+C/
8e) ' for small values of n =N/L. The resulting
value of H„=(H)„/N is compared to Hf =(H)f/N
for the magnetic state. The calculations are
easily worked out if n is only a few percent.

The following results and typical figures are
obtained. If the band contains only few electrons,
then the nonmagnetic state 4' has the lower (H),
e.g. , for n =0.01 and q=O, one has Hf= 1.07
above the bottom of the band, and ~ =H/ H„-
=0.26 e. However, if the band is nearly full,
then the magnetic state has a. lower (H) than 4,
provided C is sufficiently larger than the band-
width 16m. For instance, for n =0.01 and @=0,
one has Hf = -0.022 e below the top of the band,
and ~ = -0.007 c, whereas for n =0.01 and q =0. 2

(corresponding to C equals twice the bandwidth)
one still has Hf = -0.022 e, but ~ = -0.0004 e.

The wave function (5) is only an approximation
for the ground state, and, therefore, it is not
certain that for a nearly full band the Hamiltonian
(11) with the band structure (12) leads to ferro-
magnetism, while it does not for a nearly empty
band. It seems rather that the exact ground state
of the Hamiltonian (11) is never ferromagnetic.
But it may be conjectured on the basis of the
above figures that the exact nonmagnetic ground
state of the Hamiltonian (11) lies much closer to
the ferromagnetic ground state of the same Ham-
iltonian if the band is nearly full than if it is near-
ly empty. Also, this difference in behavior is
certainly due to the different behavior of the
density-of- states curve at the top and at the bot-
tom of the band. The occurrence of ferromag-
netism would then depend on the interaction of
the electrons which is associated with the two-
center Coulomb integrals, in particular, the ex-
change integral. But in view of the above cor-
relation through the one-center Coulomb integral,
the top of the band structure (12) has ga, ined a
decisive advantage for achieving ferromagnetism
over the bottom. Indeed, the expectation value
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for the terms associated with the two-center
Coulomb integrals is the same for the nearly
empty and the nearly full bands, positive for the
nonmagnetic state, zero for the ferromagnetic
state.
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Recent reports of the fluorescence in GaP have
described amazingly complicated spectra with at
least 100 sharp lines near the band gap energy. ' '
The present Letter reports three quite distinct
types of spectra in which a total of about 300 lines
have been counted, and shows that the vast majori-
ty of these lines arise from the recombination of
electrons and holes which are trapped on distant
donor-acceptor pairs. By the use of the intensity
patterns of the spectra, particular lines may be
identified with known donor-acceptor separations,
and from their energy positions the sum of the
isolated donor and acceptor binding energies is
obtained. The observation of such lines should
be useful in the chemical analysis of crystals and
in the study of donor and acceptor wave functions.

The sharp lines considered here fall in the green,
between 2. 317 eV and about 2. 2 eV at 1.6 K, and
appear to be independent of other broad emission
bands, one of which lies at 2. 22 eV. '& The lines
have a half-width of about 3x10 ' eV and occur
without phonon cooperation. All the crystals which
display the spectra have been grown from Ga solu-
tions. Type I spectra were obtained from "undoped"
crystals, type II from crystals grown from a solu-
tion containing Zn (an acceptor), and type 0 from
a run in which air entered the system. Type II
spectra often include weak type I lines. The spec-
tra do not depend strongly on the thermal history
of the sample. The spectra were recorded photo-
graphically using a grating spectrograph giving a

0
dispersion of 2 A/mm.

Donor-acceptor pairs have been suggested as
an explanation of different fluorescent effects in
SiC- and ZnS-type phosphors. '~' It has been dif-

ficult to identify conclusively pair effects, chiefly
because it has been believed that the important
pairs are only very closely spaced pairs, or ex-
cited states of pairs with larger internuclear
separations, and the precise conclusions which
can be drawn from the experimentally observed
broad bands are few.

Distant donor-acceptor pairs are, in compari-
son, simple. By considering a Born cycle the
energy of an electron, and a hole (i.e. , the energy
of fluorescence) on an isolated distant donor and
acceptor separated by a distance z is

Z(r) =Z - Z - F. +e'/er (e'/e)(a/r-)' ~, (~l)
gap D A

where ED and E~ are the isolated donor and ac-
ceptor binding energies, e the static dielectric
constant, and a the effective van der Waals coef-
ficient for the interaction between a neutral donor
and a neutral acceptor For an. isolated pa, ir [typi-
cally a pair separated by a distance less than r„
where r, = (donor or acceptor concentration) ~']
and a given type of donor and acceptor, the possible
values of r are discretely distributed. A spectrum
of discrete lines will result. [When the distance
between donor and acceptor becomes small, there
will also be angular dependencies of E(r) for fixed

I r I which will be related to the donor and accep-
tor wave functions, and the spectrum will become
more complex, but remain discrete. ]

It is expected that the fluorescent intensity from
isolated pairs at large separation r will be propor-
tional to the number of pairs, N~, at that distance
multiplied by a smooth and fairly slowly varying
function of r. This function is controlled by the


