
VOLUME 10, NUMBER 4 PHYSICAL RK VIE%' LETTERS 15 FEBRUARY 1963

SOLUTIGNS TO DISPERSION EQUATIONS FOR NUCLEON-NUCLEON SCATTERING*
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Since the existence of the multipion resonances
p, ~, and q has now been firmly established, ' it
leads naturally to the question of what implication
such resonances have on the nucleon-nucleon in-
teraction. In this paper we use relativistic dis-
persion relations to calculate elastic nucleon-
nucleon scattering phase shifts from zero to 400
MeV, including the exchange of such resonances. '
In addition to the single-pion exchange and the ex-
change of the above mentioned resonances, we
also include the exchange of an S-wave pion-pion
pair in the form of an effective scalar particle.

Our procedure is as follows: First, we calcu-
late the pole terms (renormalized Born approxi-
mation) corresponding to the exchange of an I= 1

pseudosca. lar (z), an I=0 scalar (8-wave m —v pair)
an I= 0 pseudoscalar (t)), an I= 1 vector (p), and
an I = 0 vector (&u). Then we solve for the partial-
wave amplitudes using the N/D method which is
essentially a procedure of imposing the unitarity
condition keeping singularities from the pole terms
unchanged. If the p and w were treated as ele-
mentary vector particles, we would encounter the
familiar divergence difficulties which necessitate
a cutoff. However, if the p and the w are treated
as Regge poles rather than elementary vector
particles, a cutoff is inherently contained in the
Regge pole description. ~ In this paper, we use
a crude version of p and u Regge poles which
amounts to simply multiplying the Born term for
the p exchange by an exponential factor exp[a.
x(t-m ') log(s/2m'-1)] and that for the ~ ex-

p
change by exp[a '(I —m ') log(s/2m' - 1)]. Here
s is the center-of-mass energy squared, t is
minus the momentum transfer squared, m, m,
and m are the nucleon mass, the p mass, and
the ~ mass, respectively. The constants n
and a ' are positive definite parameters intro-
duced to account for the asymptotic Regge pole
behavior. Note that these exponential factors
are near unity in the low-energy region so that
the Born terms are substantially modified only
at high energies. Other parameters of the prob-
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g 22, m~2, andg~2, where the g's are the cou-
pling constants. We have two coupling constants
gp1' and gp2' for the p meson coupled, respective-
ly, to the charge and the anomalous magnetic mo-
ment of the nucleon. For the ~ meson, only the

charge coupling g~' is included. The isoscalar
anomalous magnetic moment is known to be small.
In addition, we also introduce the singlet and
triplet scattering lengths as and af as subtraction
constants on account of the fact that S-wave scat-
tering amplitudes could be sensitive to extreme
short-range forces not included in our calculation.

Some of the parameters we mentioned have pre-
determined values:

rn = 140 MeV, m = 500 MeV, m = 780 MeV,
Tj'

g =14.4, a =5.4x10 ~~ cm, a =-7.7x10 cm.
S

Although the p resonance observed in production
processes also has a well-determined peak (-760
MeV), the width of the resonance is sufficiently
broad so that the effective mass which enters the
nucleon-nucleon scattering problem may be shifted
substantially from the observed peak in production.
Therefore, we include rap among the remaining
nine adjustable parameters: rn~, g~, m, g 1',

2 2 I f 2

We define partial-wave amplitudes in terms of
nuclear bar phase shifts as follows:

h = (E/2imp) [exp(2i5$ - 1],

h = (E/2imp) [exp(2i5 g
—1],

h = (E/2imp) [(cos2eg exp(2i5 g —1],
) )

h = (E/2imp)[(cos2eg exp(2H g —1],

J
h = (E/2mp)(sin2c ) exp[i(5 + 5 3],J J-1,J 0+1,r '

where E is the center-of-mass energy; E =-,'(s)v',
and p is the center-of-mass momentum. We de-
note that part of the h's which is obtained by tak-
ing the partial-wave projection of the pole terms
by B&(s), B&gs), B~ 1 J(s), By+1 gs), and
B~(s). The B's, of course, contain only singu-
larities in the unphysical region s &4m2 (left-hand
cuts). However, to satisfy unitarity the h's must
have branch cuts starting at the physical thresh-
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old (s = 4m') with discontinuities given by

imh =(mP/E)ih I',

Imh = (mp/E) I h

=(mp/E)(lh I + lh I ),
2 J 2

7

Imh =(mp/E)(lh I I + Ih I ),
2 J 2

+ j +

J= J gJ
Imh =(mp/E)(h h +h h

s~4w . (2)

l'-1
,, (' '-,

(s' - 4m2
Imh(s ')

(3)
(s ' - 4m') (s ' —s) '

where the J indices are now suppressed but the
orbital angular momentum is denoted by l. Here,
an (l —1)th order pole (I ~ 2) at s = s, is added so
that both the threshold behavior and the unitarity

In this paper, we make some approximation to
the above unitarity condition. For the S and P
waves, we ignore the mixing with higher partial
waves, i.e. , we use the uncoupled unitarity con-
dition Imh = (mp/E) lh I'. For higher partial waves

(I ~ 2), the phase shifts are rather small so that
the branch cut due to the unitarity condition is
not very important. For the imaginary part of
all these waves except h J= 2, we keep only the
one-pion exchange terms which enter quadratical-
ly on the right-hand side of (2). The Omnds
method will be used for the calculation of h

J=2
which is coupled to the triplet P wave by uni-
tarity. We can now formulate dispersion re-
lations for the h's containing the 8's and the
right-hand cuts as well as satisfying the bound-
edness condition at infinity and the p

+ be-
havior at threshold. We find it convenient to
use the following dispersion relation which sat-
isfies all the above requirements:

2 /-1 2s 4m (s 4m )
( s-s~ ij

bound at infinity are maintained. Since the sec-
ond term on the right side of Eq. (3) is, in gen-
eral, quite small for /~ 2, the final result is not
sensitive to s, . The only exceptions are the

h&+1 & amplitudes (for example, E2 and H~ in

p - p scattering) where the integral term may be
comparable to B. This is due to the fact that
h J+1 J couples to an amplitude two units lower
in orbital angular momentum; hence the unitarity
integral becomes rather important. We choose
s, = 60m~2 corresponding to additional left-hand
singular ities slightly beyond the w threshold.

For the P-wave amplitudes, the dispersion re-
lation given by Eq. (3) is, of course, independent
of s, . For the S-wave amplitudes, Eq. (3) be-
comes a dispersion relation with a subtraction
at s, . We readjust s, for each of the S-wave am-
plitudes to obtain the correct scattering length

as or ag.
The dispersion Eq. (3) is solved by the N/D

method for S and P waves. Solutions of the high-
er partial-wave amplitudes are obtained by sim-
ple integration using the approximation for the
unitarity integral mentioned above. The nine
adjustable parameters are used to fit our solu-
tions to values given by direct phase-shift anal-
ysis. &' Resulting P -P phase shifts are shown
in Figs. 1 and 2 comparing to one of the energy
dependent phase-shift analysis solutions of the
Livermore group (MIDPOP), all of which fit the

p —p observables. The n —p S~ phase parameter
is shown comparing to the analysis of the Yale
group. ' Other n —p phase shifts are also calcu-
lated, but the comparison with direct phase-shift
analysis is less meaningful since the latter has
a rather wide range of variation. The adjustable
parameters corresponding to our results in Figs.
1 and 2 take on the values ms =420 MeV, mp 700
MeV, + =0 0135~~ n =0 010~~ g
g =9.2, g =16.7, g 1 =5.06, and g 2 =49.0.
To avoid possible ambiguties in the definition of
coupling constants, we write out the B,(I = 1) am-
plitude near the threshold explicitly in terms of
the masses and coupling constants according to
our normalization. We find

p p p

]43



VOLUME 10, NUMBER 4 PHYSI C A I. R K V I K %' I.K IIE R S 15 FEBRUARY 196$

400

100 150 200 250 300 350 400 50
I

100
I

150 200 25Q 300 350 400
I I l t I

'S()

20'—

10'—

1Q0

-20'-
-10'—

10' — r
00 /

-10'—

3
PQ

50

-150

-25'

-30'-

28'—

24'—

160

3p

-2'

40

00
}00 15Q 200 250 300 350 400

MEY

60

I

50 150 200 250 300 350 400

MEY

FIG. 1. Energy dependence of the S& n -P phase-shift and low partial-wave p -P phase shifts. The dotted line is
the result of the Yale group, dashed lines are Livermore results, and solid lines are our calculated curves.

Our So phase shift lies below the Livermore
analysis by a few degrees in the low-energy re-
gion. A careful treatment of the static Coulomb
correction could bring our calculation into better
agreement with the Livermore result. As we
mentioned before, the I'2 and the 'H4 phase shifts
have stronger dependence on the unitarity integral
than that of the other high partial waves. In fact,
for these two amplitudes, there is a significant
cancellation between the unitarity integral and the
pole terms so that the result is somewhat un-
certain. However, both of these two phase shifts
are very small. Therefore, results of the direct
phase-shift analysis are also quite uncertain. For
the same reason, different sets of the Livermore
solutions differ widely for I3 as well as I~. For
the picture as a whole, we find it rather convinc-
ing that the simple exchange mechanism described
above with the aid of the relativistic dispersion
relations does produce a coherent description of

nucleon-nucleon scattering. The number of pa-
rameters required in the present work is sub-
stantially smaller than the familiar approach using
phenomenological potentials. Moreover, all of
our parameters except the scattering lengths are
quantities which, in principle, can be related to
other physical processes such as pion-pion scat-
tering, pion-nucleon scattering, and the elec-
tromagnetic form factors of the nucleon. For ex-
ample, the effective S-wave pion-pion pole and
the p-meson poles can be treated by a more so-
phisticated method if the NN- vv amplitudes are
known. Some works in this direction are in prog-
ress. Incidentally, the value of m& in our anal-
ysis is substantially below the p-meson peak ob-
served in production processes. The same shift-
ing of the effective p mass is also found in the
analysis of the nucleon form factors. ' Theoreti-
cal discussions on this point have been given by
Ball and one of us (DYW). ' Although our deter-
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FIG. 2. Energy dependence of high
partial-wave (E - 2) P -P phase shifts.
Dashed lines are Livermore results
and solid lines are our calculated curves.
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mination of various coupling constants and Regge
slopes are tentative results which may change
somewhat in a more complete treatment of the
problem, it is clear that the experimental in-
formation on the quantum numbers of the reso-
nances has played an important role in simplify-
ing the theory of nucleon-nucleon interaction.
Finally, we mention that results of our calcu-
lation can also be used to fit the experimental
data directly rather than fitting results of phase-

shift analysis. The latter is chosen for conven-
ience in the present work.

*Work supported by the U. S. Atomic Energy Com-
mission.
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EVIDENCE FOR A PRIMARY COSMIC-HAY PARTICLE WITH ENERGY 10 eV~

John Linsley
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Analysis of a cosmic-ray air shower recorded
at the NIT Volcano Ranch station in February
1962 indicates that the total number of particles
in the shower (Serial No. 2-4834) was 5x10'0.
The total energy of the primary particle which
produced the shower was 1.0x10~ eV. The show-
er was about twice the size of the largest we had
reported previously (No. 1-15832, recorded in
March 1961).'

The existence of cosmic-ray particles having
such a great energy is of importance to astrophys-
ics because such particles (believed to be atomic
nuclei) have very great magnetic rigidity. It is
believed that the region in which such a particle
originates must be large enough and possess a
strong enough magnetic field so that REI» (1/300)
x(E/Z), where R is the radius of the region (cm)
and H is the intensity of the magnetic field (gauss).
E is the total energy of the particle (eV) and Z is
its charge. Recent evidence favors the choice
Z = 1 (proton primaries) for the region of highest
cosmic -ray energies. ' For the pr esent event one
obtains the condition RB» 3 x 10' . This condition
is not satisfied by our galaxy (for which RH ~ 5
x10", halo included) or known objects within it,
such as supernovae.

The technique we use has been described else-
where. ' An array of scintillation detectors is
used to find the direction (from pulse times) and
size (from pulse amplitudes) of shower events
which satisfy a triggering requirement. In the
present case, the direction of the shower was
nearly vertical (zenith angle 10+ 5'). The values
of shower density registered at the various points
of the array are shown in Fig. 1. It can be ver-
ified by close inspection of the figure that the
core of the shower must have struck near the

point marked "A," assuming only (1) that shower
particles are distributed symmetrically about an
axis (the "core"), and (2) that the density of par-
ticl.es decreases monotonically with increasing
distance from the axis. The observed densities

0.6

KlLOMETERS

FIG. 1. Plan of the Volcano Ranch array in February
1962. The circles represent 3.3-m2 scintillation de-
tectors. The numbers near the circles are the shower
densities (particles/m ) registered in this event, No.
2-4834. Point A is the estimated location of the
shower core. The circular contours about that point
aid in verifying the core location by inspection.
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