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In the investigation of the attenuation of 1000-
Mc/sec hypersonic waves in single-crystal quartz
at liquid helium temperatures, an unexpected de-
crease in the attenuation with decreasing tempera-
ture was observed below about 2°K for both com-
pressional and shear waves. It is suggested that
this decrease is due to a phonon “bottleneck.”
Energy scattered elastically into modes of the
same frequency as the primary beam must sub-
sequently be brought into the thermal modes; at
sufficiently low temperatures this second step
limits the attenuation of the primary beam. A
qualitative and roughly quantitative agreement
with theory is obtained.

The experimental arrangement, utilizing the
surface excitation technique of generating and de-
tecting hypersonic waves,! has been described in
detail by de Klerk and Bolef.? A high-power
pulsed transmitter was used to generate micro-
second hypersonic pulses in single-crystal quartz.
The exponential decay pattern of the pulses was
detected by means of a sensitive superheterodyne
receiver and displayed on an oscilloscope. The
attenuation measurements were made using an
exponential generator, calibrated by means of a
precision step attenuator. Changes in attenua-
tion of 0.001 dB/cm could be measured in the
temperature range of interest.

Curves of attenuation as a function of tempera-
ture for an AC- (shear-)cut quartz rod (diameter
0.25 inches, length 1 inch) are given in Fig. 1
at frequencies of 1000 Mc/sec and 500 Mc/sec,
and in each case for pulse repetition rates of 25
pulses per second (pps) and 75 pps. In each case
the decrease of attenuation at lowest tempera-
tures is observed, but the onset of the effect var-
ies with frequency and pulse repetition rate.

Fig. 1 also shows curves (at these two frequen-
cies) for the case when the receiver end of the
rod has been coated with Canada balsam, re-
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FIG. 1. Attenuation of hypersonic shear waves in

AC -cut quartz as a function of temperature. 1000
Mc/sec: (a) pulse repetition rate of 25 pulses per
second; (b) 75 pps; (c¢) 25 pps, but receiver end coated
with Canada balsam. 500 Mc/sec: (d) 25 pps; (e) 75
pps; (f) 75pps, but receiver end coated with Canada
balsam.

sulting in the suppression of the effect.

The following explanation is offered. In agree-
ment with the work of Bommel and Dransfeld,?
one can neglect the direct effect of anharmonic
processes on the attenuation below about 10°K,
and the acoustic attenuation « tends to a constant
value a,. This attenuation arises from the elas-
tic scattering of the sound beam (the primary
mode) by defects in the body of the crystal or by
surface irregularities into a large number of
secondary modes of the same frequency v. The
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number of secondary modes is the number of
modes of the crystal in the frequency interval

v, Av, where, roughly, Av= a4, v being the
acoustic velocity. From some of these second-
ary modes (the transverse ones) energy is trans-
ferred to the high-frequency thermal modes by
means of anharmonic three-phonon processes.
Since the number of secondary modes is very
large, the second step does not limit the over-
all effectiveness of the attenuation process, un-
less the relaxation time of each secondary wave
for three-phonon interaction (I,/v) exceeds a char-
acteristic time 7,=1/a,v by a comparable factor.
Since /, increases rapidly with decreasing tem-
perature, this condition will be satisfied at some
low temperature. Below that temperature, en-
ergy will pile up in the secondary modes, and
this will cause the over-all attenuation of the
primary beam to decrease. The transfer of en-
ergy from the secondary modes to the thermal
modes thus forms the same bottleneck which was
discussed by Van Vleck?® in connection with elec-
tron-spin resonance.

One can consider the energy balance of a typical
secondary mode which receives energy from a
pulsed primary beam, decaying with time 7,, and
has a repetition period {£. One can easily show
that the effective attenuation of the primary beam
is

o = ol +1,(1,/Hv2/4n V2], (1)

where V is the volume of the crystal and /, the
mean free path for anharmonic processes of the
transverse modes; these interact most strongly
with the thermal modes. One can use the theory

of Landau and Rumer®* in its modified form® to
calculate 7,. It is important to note that I, v 1T,
so that (1) becomes

a=ag[1+(1o/D(N/VA/TH] ™, (2)

where ) is the wavelength of the primary beam
and the parameter A can be estimated roughly in
terms of the Gruneisen constant and the elastic
constants.

For v =1000 Mc/sec and =40 msec, taking the
observed value of 7,~2 msec, we estimate the
second term in the square bracket of (2) to be
0.08/T*, where T is expressed in degrees ab-
solute. The behavior of curve (a) of Fig. 1
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would require this to be 1.0/7T%. Thus the theory
underestimates the bottleneck correction by a
factor =~12. This numerical discrepancy may
arise partly from uncertainties in our theoretical
expressions for Av and /,, and partly from the
likelihood that the primary beam is not a single
mode. The latter would decrease the ratio of
secondary to primary modes and increase the
bottleneck correction.

In other respects, Eq. (2) seems to describe
the observed decrease of o with decreasing T.
By doubling the wavelength, the correction term
should be increased, and the “knee’ shifted to
higher temperatures by a factor 2¥4=1.68. The
knee is indeed shifted from 1.9°K to 3.0°K [see
curve (d)]. Again, increasing the pulse repeti-
tion rate by a factor 3 should shift the tempera-
ture of the knee by a factor 3¥*=1.32. Sucha
shift, but less than predicted, is observed both
at 1000 Mc/sec [compare curves (a) and (b)] and
at 500 Mc/sec [curves (d) and (e)].

The appearance of the bottleneck effect requires
that the secondary waves suffer no appreciable
inelastic scattering, except for the anharmonic
processes considered, in a time [,/v. During
that time a given phonon will suffer numerous
elastic scattering processes at the boundaries
(~10° to 10%). Thus even a small escape proba-
bility at the boundaries will enable the phonons
to bypass the bottleneck. This is why attaching
a good bonding material such as Canada balsam
to even a small part of the surface eliminates the
low-temperature decrease in « [curves (¢) and (f)].

A helpful discussion with Dr. P. G. Harper is
gratefully acknowledged.
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