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Table I. Comparison of the theoretical value of x
= VI - Vc with its value (1/3) i Remi obtained from the
analysis of proton-carbon scattering by Levinson and

Banerjee. V& is the ordinary, elastic optical poten-
tial; VI, the optical potential appropriate to propaga-
tion preceding a "direct interaction. " V data are
from RiesenfeM and Watson. E is the proton energy.
All quantities in Mev.

tion scattering in impulse approximation. An additional
excitation (3~ i xt would occur if either direct (non-
interference) scattering or repeated inelastic collisions
withp were considered. See G. C. Wick, Phys. Rev.
94, 1228 (1954), and T. K. Fowler (to be published).

INTEGRATION OF SECONDARY CONSTRAINTS
IN QUANTIZED GENERAL RELATIVITY
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Using his generalized Hamiltonian dynamics'
and treating x' as the time parameter, Dirac'
has recently shown that the primary constraints
(g-equations) in general relativity can be brought
by a canonical transformation into the form

Po 0
See reference 2.
W. B. Riesenfeld and K. M. Watson, Phys. Rev.

102, 1157 (1956).

velopment with the Levtnson-Banerjee analysis
of a single inelastic transition would have re-
quired calculating the transition from packet
state y, not known in detail, to a particular
final state. However, since the impulse approxi-
mation applies at most energies of interest, de-
tailed features of the nuclear states influence
the scattering much less than does VI, which
alters the kinematics of the final collision, and
hence the angular distribution. '

Operated by Union Carbide Corporation for the
U. S. Atomic Energy Commission.

~Nomenclature: inelastic collision means one in
which the nucleus is left in a different energy eigenstate.
Units: 8 = 1 throughout.

2C. A. Levinson and M. K. Banerjee, Ann. Phys.
3, 67 (1958).

~K. M. Watson, Phys. Rev. 105, 1388 (1956).
4The inelastic part of g h, which is not coherentcoh'

with the incident beam, concerns instead relative
coherence defined by M. Lax, Revs. Modern Phys.
23, 287 (1951); see also reference 3.

~H. A. Bethe, Phys. Rev. 103, 1353 (1956).
SThe convenience of defining the nuclear medium

with respect to a packet state following certain inelas-
tic collisions was pointed out by K. M. Watson, ref-
erence 3.

is the nuclear excitation accompanying correla-
P

where n ~ is the momentum conjugate to g». He
has shown moreover that the transformed Ham-
iltonian in the absence of matter, after Eq. (1)
has been taken into account, is

lf = fd'x((g") ~'Xl +g„()e~sXs), (2)

in which

rs ~r
X =n~sg~s „—2(ni'sg ) (3)

Xl. =& '(g gsf, --,' g~sg~y) m" m~ -EA"', (4)

where -K'=detg~z and R' ' is the fully contracted
Riemann tensor of the spatial manifold. The
secondary constraints ()( - equations) are then

Xs-O, XL= 0.

(The symbol = denotes a "weak" equation. Greek
indices run from 0 to 3; Latin indices from 1 to
3.)

If one wishes to quantize general relativity, an
alternative procedure to that of Dirac is to render
the Lagrangian nonpathological by adding to the
Lagrangian density the term

—.
'

(-g) jmg s) s~,
where S"=(gi ~g( P -,' g) Pg~~-)gz~ &, and then
to restore the Einstein equations of motion for
matrix elements of the potentials by imposing
on the state functionals 4(g»(x~)) the subsidiary
conditions (harmonic coordinate conditions)

s~e =o.
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X~% =0,

XL4' = 0.

(8)

(9)

The commutators of Xz, XL, are readily evalua-
ted from the expressions (3), (4) as -i times the
corresponding Poisson brackets: they are

[Ru (x), X„(y ) ]=i[(e/Bx")[Xu(x)d'&(x -y)}

('/sy")(&„(y)&"'( -y))], (10)

[&u(x), &f,(y)] = -i&L„u &"'(x -y). (11)

Given arbitrary patch functions f"(x), we may re-
write (3) as

x .f % = ~d x (f g'xs, u +f,rgus

+f",sg~ )«~g„.
We compare this expression with the variation in-
duced in g~s (x), g~s'(x) gys (x) = ( gxs, u
+a" ~gus+au sou ), by an arbitrary infinitesi-
mal variation of the coordinates, x'u=xu+au (x). It
is clear that ~ (x) is just the set of infinitesimal
generators of the group of general coordinate
transformations on the potentials g~~. Equation
(10) exhibits the structure constants of this
group; Eq. (11) merely expresses the fact
that KL is a scalar density. The conditions (8)
now tell us that 4 is a functional of those com-
binations of the g~~ which are invariant under
general coordinate. transformations, that is, of
the three eigenvalues of the Riemann tensor
R"'~~ at all points of the manifold.

The remaining problem, which will not be
discussed here, is to use the last condition (9) to
eliminate a further degree of freedom. The two
remaining invariants of R"'&z, on which 4 will

374

When these conditions are required not merely
to be valid on one hypersurface x'= constant but
to remain valid as 4 develops with time (we are
using a Schrtkiinger picture), they give rise to
two sets of conditions on 4, which turn out to
be formally identical with the Q- and y -equa-
tions, respectively, of Dirac's formalism.
Moreover, the Hamiltonian derived from the
modified Lagrangian is just the expression (2).

Thus, after applying to 0 the unitary trans-
formation which is the quantum-mechanical
equivalent to Dirac's canonical transformation
and making the substitution m""(x )=i&/&gpq(xa),
we get as the primary conditions [see Eq. (1)]

(e/Sg„0)e= 0, (7)

of which the solution is 4 = 4(g~s).
We now consider the secondary conditions

then depend, will correspond to the two inde-
pendent states of polarization of a graviton.

P. A. M. Dirac, Proc. Roy. Soc. (London) A246,
326 (1958).

2P. A. M. Dirac, Proc. Roy. Soc. (London) A246,
333 (1958).

PROPOSAL FOR A SOURCE OF
POLARIZED PROTONS
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In a cyclotron, protons are produced by ion-
izing hydrogen atoms in the center of the magnet
that is in a strong field where the electron spin
S and the proton spin I are uncoupled. The com-
ponent Iz of the proton spin along the field i.s
then a good quantum number and it is generally
assumed that it is left unchanged in the process
of ionization of the hydrogen atoms. If these
atoms arrive in the ionizing region in states
where Iz has one value only, say + —,', completely
polarized protons could be available for accele-
ration.

The variation of the four energy levels of a
hydrogen atom as a function of the applied field
is represented in Fig. 1.

It is relatively easy to separate in an incoming
beam of unpolarized hydrogen atoms by a Stern-
Gerlach experiment those in states a and 5 from
those in states c and d, because of the large
difference in magnetic moment between the two
groups of states. The further separation by the
same method of the states a and b, necessary if
atoms with Iz =

& only, are tobe selected, al-
though feasible, is far more difficult.

In the present proposal, once a beam of atoms
distributed with equal populations between the
states a and b has been prepared by a Stern-
Gerlach device, a11. the atoms in the state 5 are
transferred into the state d by means of a radio-
frequency field Hy cosset parallel to the field IIp,
by the adiabatic passage method. ' All proton
spins are then in the state Iz = —,'.

The matrix element for the transition is

A cosset =2PH, ( 5 i Sold) cosset

=MPH, EW[hW'+(2PHO)'] ~ coscot, (1)


