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[T+U+(1-A)(V-U)] g =Eg. (2)

The solutions g of this equation are orthogonal
to the occupied states. Note that the orthogonal
complement of the space spanned by the occupied
states is not invariant under the operator T+V.
That is why it would not be correct simply to
solve Eq. (1) and then to project out the occupied
states. If the occupied states are eigenfunctions
of T+V, then Eq. (2) reduces to Eq. (1). The

In recent years the elastic scattering of par-
ticles by a nucleus has been successfully ana-
lyzed' in terms of a simple complex-potential mo-
del.' In such calculations the exclusion principle
has been ignored although for not too energetic
bombarding nucleons the effect can be consider-
able. A modification of the optical model is pro-
posed here which takes into account the effect of
the exclusion principle within the framework of
a single-particle description of the many-body
problem.

Suppose that the nucleus can be described by
a single-particle real potential U, which could
be momentum as mell as coordinate dependent,
let the eigenfunctions of T+U be uz(r), and
assume the first N levels are occupied. Suppose
further that an incident nucleon in its interaction
with the nucleus is to be described by a complex
potential V. Note that it is in the nature of the
optical model that, although the incident nucleon
is identical with those in the nucleus, it is sub-
ject to a different complex potential to simulate
the inelastic processes. Let the incident nucleon
be described by the wave function g. We seek a
one-body description of the scattering. Conse-
quently, if we ignore the exclusion principle and
let T be the kinetic energy, we are led to the
Schrodinger equation

(T+ V)g =Zg.

It is clear that the solutions to Eq. (1) are in
general not orthogonal to the wave functions
uz(r), for n=1, 2 ..N, descr. ibing the nucleons in
the nucleus. Let A be a projection operator
onto the N occupied states. Then Eq. (1) should
be replaced with
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where
P = 2mE/g2

n2 =(2m/5~)[E+Vo+i V, ],
Im a& 0.

The first term in each of these two expressions
is the usual result while the second term re-

effect of the exclusion principle is then taken into
account simply by choosing orthogonal solutions
to the Schrodinger equation.

Clearly Eq. (2) is a simple extension of the
work of Bethe and Goldstone. ' One of us has
been able to show rigorously, starting from the
n -body problem, that the elastic scattering of a
nucleon by a nucleus can be described by an
equation of the form of Eq. (2), with V a nonlocal
potential. Furthermore, an explicit expression
was given for the potential in terms of the as-
sumed forces between nucleons.

The point of this note is to suggest the use of

Eq. (2) with V as a phenomenological potential.
Actually, the exclusion principle will also have
an explicit effect on V, arising for example from
the requirement that in intermediate states the
target nucleon as well as the incident nucleon
must be in unoccupied states. We do not know

the additional restrictions this may impose on V,
but nevertheless suggest that Eq. (2) is clearly
more nearly correct than Eq. (1).

If V is taken to be a local potential, the solu-
tions to Eq. (2) are not only quantitatively but
also qualitatively different from the solutions
to Eq. (1). This may be seen by considering the
one-dimensional problem in which a particle of
mass m and energy F. impinges on a potential
hole

V(x) = O, x&O, x&t,
= -V,-iV„0&x& t,

while a single identical particle is confined in

the lowest state of an infinitely deep potential
hole of the same extent. For this problem Eq.
(2) can be solved exactly, and taking the limit
of large t leads to the following simple express-
ions for the transmitted and reflected ampli-
tudes if the incident wave has unit amplitude:

340



VoLUME 1, NUMBER 9 PHYSICAL REVIEW LETTERS NovEMBER 1) 1958

fleets the effect of the exclusion principle. The
transmission is thus greatly increased, since
the first term in T corresponds to an exponen-
tial decay of' g due to absorption. The relative
change in R is much smaller. The t dependence
of the exclusion-principle terms originates in
part from the fact that the amount of momentum
space occupied, and therefore excluded, by the
bound nucleon decreases with increasing poten-
tial width.

This example indicates that Eqs. (1) and (2),
with the same potential V, will in general lead
to different angular distributions and total cross
sections. %e want to emphasize the corollary:
the phenomenological potential needed in order
to fit given experimental data will depend on
whether Eq. (1) or Eq. (2) is used. It might be
felt that in a phenomenological calculation this
is unimportant since V is adjusted to fit the ex-
periments and is used only to summarize a great
many data in a convenient form. %e do not feel
this is a valid view for two reasons.

First, a great deal of physical significance
has always been ascribed to the optical para-
meters —such as a nuclear -radius, and surface
thickness. Including the exclusion principle will
inevitably lead to different optical parameters.
In principle, presumably, there always exists a
"potential" which fits any given scattering data
by means of Eq. (1); in practice only energy-
dependent and spin-orbit, but otherwise local,
potentials have been used. The effect of a loca1.
potential in Eq. (2) is quite different, since the
exclusion principle already acts in a highly non-
local manner. It is therefore to be expected that
the use of a local potential in Eq. (2) has more
physical significance than in Eq. (1).

Second, from a theoretical point of view, any
fundamental theory attempting to describe the
scattering of a nucleon by a nucleus in terms of
nucleon-nucleon forces' will lead to an equation
of the form of Eq. (2). If the analysis of data in
terms of optical parameters is to prove useful to
the theoretician, i.e. , remove the necessity for
theoretical calculations of cross sections or
phase shifts, then the optical parameters must
refer to Eq. (2).

Since Eq. (2) is nonlocal there may be some
concern over the requirements of causality. %e
are unaware of any sufficiently general express-
ion of this requirement to be applicable to this
equation. ' Although Eq. (2) does not lead to a
local current continuity equation, it can be easily
shown that the wave function normalization will

decrease monotonically for a potential V whose
imaginary part is everywhere negative.

In conclusion, we observe that the numerical
calculations of scattering with Eq. (2) are not
essentially more difficult than with the Schrod-
inger equation. One starts by calculating the
first N states of U. Then recalling that

N
A(r, r') = g u„(r)u„*(r'),

n=1

Eq. (2) may be written in the form'
1V

(T+ V-F) g (r) = g A.„u„(r),
n=1

where the A.„need only be chosen so that P is
orthogonal to the functions un for n= 1, 2...N.
The solution of the inhomogeneous equation for
g is straightforward for arbitrary Az, and finally
the constants A.„must be evaluated by the ortho-
gonality requirements. An explicit expression
for An in terms of Green's function of the prob-
lem without the exclusion principle is easily
derived, but does not seem very useful from a
practical point of view.
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