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FIG. 2. Hysteresis loop (50 cps) in the direction of
b axis at 143'C.

perature.
Judging from these experimental results, it is

clear that NaNO, is ferroelectric along the 5
axis below the 160'C transition point, and the
transition seems to be of the first kind, but even
then the jump at the transition would be very
small, The ferroelectricity is considered to
come from the favorable arrangement of
groups in the crystal. The ordered arrangement
of these groups causing the crystal to be polar
in the low-temperature form seems to become
disordered at the transition temperature,

Details of our studies will be reported shortly.
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The susceptibility versus temperature curve
for an antiferromagnet is usually characterized
by the appearance of a maximum and the precise
relationship of this maximum to the associated
anomaly in the specific heat is of great interest.
The elucidation of this problem using even a
comparatively simple model of an antiferromag-
net, such as the Ising model, is difficult and the

behavior in the critical region has long been a
subject of speculation. The work summarized
below, however, leads to the conclusion that the
susceptibility, y, versus temperature, T, plot
for an antiferrornagnet should have a vertical
tangent (X increasing with I) at the same tem-
perature at which the specific heat anomaly oc-
curs. Since y must vanish as T becomes infinite,
this form of the singularity implies that the ob-
served maximum in y occurs above the true
cr itical temperature.

These conclusions are based on a study of the
susceptibility of Ising models. No exact closed
expressions for the susceptibility of two- or
three-dimensional Ising models have yet been
given but series have been published by various
authors. ' ' The best method of obtaining these
seems to be that employed by Oguchi' and de-
veloped by Domb and Sykes. ' Extrapolation of
these series has been attempted, most recently
by Park, ~ but it has proved difficult to draw
firm conclusions in the critical region. We have
been able to rewrite the general expansion in
such a way that the major part of the suscepti-
bility is known if the configurational energy of
the lattice is known. The remaining part has a
much simpler configurational interpretation than
the original expansion. In terms of the antifer-
romagnetic "high-temperature" variable v

=tanh l Jl/kt, where J is the interaction energy
between parallel spins, we find that the suscep-
tibility per spin may be written

m2
X(v) =

~~ [1+(q-1)v] '{i+(q-2)v+v'

(A)

where m is the magnetic moment per spin, q is
the coordination number, and U(v) is the con-
figurational energy per spin. The positive coef-
ficients d„enumerate a well defined class of
closed graphs on the lattice with at most two odd
vertices; d, to d4 vanish identically on all lattices
and d, and d, vanish on most loose-packed lattices.

By using this result, the series expansion for
the susceptibility of the plane triangular lattice
has been extended up to the term in v", that of
the plane quadratic lattice up to the term in v'4,

and that of the honeycomb lattice up to the term
in v'4. The general result holds equally for
three -dimensional lattices and the corresponding
series can also be considerably extended.

Numerical evaluation of the function defined by
Z(-l)~d~v shows that it contributes only a few
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percent or less to the value of g at temperatures
in the region of the critical point and above.
(For lattices such as the plane triangular lattice
which have no critical point, the relevant range
is determined by the corresponding ferromag-
netic Curie temperature. ) Because of this the
behavior of the susceptibility in the critical re-
gion is effectively determined by the energy
alone. For plane lattices this is known exactly
from the work of Onsager' and others, ' and the
expressions are valid at all temperatures. Con-
sequently we may conclude that for loose-packed
lattices, y behaves in the critical region as
a+b(T-Tc)log l T Tc i w-here a and 0 are constants
and T~ is the critical temperature. The energy
is not known in closed form for three-dimensional
lattices but the calculations of Wakefield' and of
Domb and Sykes' indicate that the specific heat
of a loose-packed lattice becomes infinite at Tz
which again shows that the susceptibility should
have a vertical tangent at the same temperature.

For close-packed lattices such as the plane
triangular and the face-centered cubic, there is
no specific heat singularity and the general re-
sult indicates that the susceptibility should not
exhibit any singularity in the neighborhood of the
corresponding ferromagnetic critical tempera-
ture.

The conclusion for plane lattices is borne out
by an exact solution in the presence of a mag-
netic field of a particular class of two-dimen-
sional Ising model in which normal Ising spins
(with magnetic moments) are coupled together
via "nonmagnetic spins" so yielding a type of"superexchange" interaction.

The generalization of the result (A) for spin
s & —,

' has not been obtained. General arguments,
however, indicate that similar physical conclu-
sions should still be valid,

More detailed accounts of these investigations
will be published in due course.
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FIG. 1. The electrical resistivity of gadolinium as
a function of temperature.

The 4f electrons in the rare earths, which are
responsible for the magnetic moments of the rare
earth elements, are highly localized and presum-
ably do not form a band; hence the direct inter-
action between 4f electrons on different atoms is
expected to be fairly weak, The ion-ion inter-
action is presumably an indirect interaction via
the conduction electrons in the manner suggest-
ed by Zener. ' This conduction electron-magnetic
ion interaction should also be manifested by the
electrical resistivity. ' ' It now appears that this
interaction depends on the spin of the 4f shell and
is involved in the electric and magnetic proper-
ties of the rare earth metals and in the supercon-
ductivity of alloys of the rare earths.

Electrical resistivity measurements on many
of the rare earth metals have now been report-
ed. ' ' Figure 1 shows the electrical resistivity
of Gd as a function of temperature. This is rath-
er typical of the hexagonal close-packed rare
earths Gd, Tb, Dy, Ho, Er, Tm, and Lu. The
other rare earths do not show regions where the
electrical resistivity varies linearly with tem-
perature, so the present discussion is not per-
tinent for these elements. Following the proposal
of Kasuya, ' the electrical resistivity of a rare
earth in the paramagnetic region might be ex-


