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conducive to high superconducting transition
temperatures. Correlation of these shifts with
the superconducting potentialities is lost when
one considers that the critical temperatures'
are Nb, Sn, 18.05'K; V,Sn, 6'K; and V,Ga, 17'K;
while for Nb, Ga, which showed no NMR shift, it
is' 16.8'K. The mechanism responsible for these
shifts is not presently understood.
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samples and Dr. R. M. Bozorth for measuring
the Nb, Sn susceptibility.
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where P is 1/kT and

j = fg v„|t'dr (2)

is the current density operator, P~ and g being
quantized electron wave functions normalized
per unit volume. v is the one-electron operator

V
for the velocity. The average is taken over the
equilibrium in the absence of the electric field.
The best way of treating the electronic conduction
in magnetic field is to start from this expression,
because the transport equation of usual Boltz-
mann-Bloch type may not be used particularly
in strong magnetic field, where the condition

0 y

is satisfied. Here +0 is a measure of cyclotron
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According to the general theory of irreversible
processes' the conductivity tensor is expressed
as

where

( = (c/eH) m„,ri =-(c/eH) nx, (6)

= px+ (e/c)Ax, n =
py + (e/c)Ay

are the noncommutative quasimomentum compon-
ents in magnetic field.

The effective Hamiltoniam of an electron is, if
the interband effect is neglected, given by'

& =E,(~x,vy, p ) + U (x, y, z),

where U is the scattering potential. The above
introduced definitions and the Hamiltonian lead
to the equation of motion,

c BU ' c BU
eH ~y

' eH Bg

which is valid both classically and quantum-me-
chanically. So X and Yare constant if U is zero,
and therefore $ and .ri define the cyclotron mo-
tion relative to the center (X, 1'). Consequently,
the velocity in (2) is divided into two parts,

+~ v~= Y+

and the conductivity tensor, Eq. (1), will then
consist of four components.

freqgencies and 7~ that of the relaxation time.
Under this condition, where electrons complete
cyclotron cycles before they get scattered, and
at low temperatures, the quantum-mechanical
effect appears in transport properties as de Haas-
van Alphen type oscillations and further as some
asymptotic behaviors at extremely strong mag-
netic fields where only the lowest Landau levels
are occupied (quantum limit).

Let us consider crystal electrons which are
described by the energy function Eo(p) in the
absence of magnetic field, p being the crystal
momentum. From general considerations, it
is seen that the cyclotron motion may be repre-
sented by the set of canonical variables ($, ti ),
(X, Y), and (pz, z) which satisfy the commutation
rules

[$, q] =[l,x] = l'/i, P-=F, c/eH, [p, z]=tf/i. (4)

Here z is the Cartesian coordinate of an electron
in the direction of the magnetic field. ($, ri ) may
be called the relative coordinates and (X, F) the
center coordinates of cyclotron motion, because
the Cartesian coordinates in the projection normal
to the magnetic field are

x=X+$, y =F+q,
and ($, ti) are defined by
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etc. , for the symmetric part of the conductivity
tensor, and

Plec
XP g de~ (l(-N~)~(f)) &~, (9)

However, a great simplification results if the
Fermi surface is not touching or not too close
to the zone boundary, so that every electron (or
hole) may be regarded as making a certain
cyclotron motion and further the broadening ef-
fect discussed by Harper and Zilberman' may
well be neglected. This assumption eliminates
the possibility of infinitely extended orbits, but
it may be taken into account, if necessary, by
some modification of the present treatment. By
their assumed nature, the variables $ and q are
bounded. From this we can show that

& {X (O) X(t)) ) d t, (8)
\

1
1

\

\
\

&((~)~())

for the antisymmetric part. Here E and F are the
current density components due to the center

motion expressed similarly to (2). The relative
current ($, q) has disappeared from these ex-
pressions, so that conduction may be thought in
terms of the migration of the center of cyclotron
motion.

Equation (8) is a direct expression of the
Einstgin relation. Figure 1 shows the Fourier
spectra of various correlation functions of vel-
ocity components. By the general theory' each
of these Fourier components represents its
contribution to the dynamical conductivity at
frequency ( . Thus we see that only the static
conductivity can be represented by the center
motion.

The successive displacements of the center
caused by successive scattering processes are
generally correlated. If this correlation is fully
taken into account, Eqs. (8) and (9) are always
exact, even for weak fields. The condition of
strong fields, (2), will however introduce an
essential simplification, because the above
mentioned correlation will then become neglig-
ible. For instance, Eq. (8), will then be simplif-
ied to

axx= yT v ((&x)'),

where n is the electron density, v the frequency
of collision per unit time, and bX the displace-
ment of the center in a single scattering process.
So the problem is reduced essentially to calcula-
tion of the scattering probability of an electron

FIG. 1. Fourier spectra of various electron velocity
components. The quantities $, X, and v are defined in
the text.

by a phonon or an impurity in the presence of a
magnetic field.

The calculation of magnetoresistance in the
above formulation is rather easy for the case of
phonon scattering, but is more complicated for
the impurity scattering case. The simplest Born
approximation will cause a bad divergence and so
we must go a step further to use at least some
sort of damping-theoretical treatment.

In this way we could formulate a rather clear-
cut theory of the galvanomagnetic effect at high
magnetic fields and give foundations and deeper
insights to the former theories of Titeica, 4

Pomeranchuk and Davydov. ' The recent theory
of Argyres' is also examined from this point of
view. It seems that his method is not adequate
in the quantum limit.

The details of this work will shortly appear in
the Journal of Physical Society of Japan.
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published); and to the International Conference on the
Electronic Properties of Metals at Low Temperatures,
Geneva, New York, 1958 {unpublished).
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Density measurements of neutron- irradiated
lithium fluoride crystals have been made by
Binder and Sturm, '~' Cohen, ' and Senio and
Tucker.

Binder and Sturm limited their study to thermal
neutron doses up to 6'.0' nvt. Cohen and Senio
and Tucker used thick crystals, which implies
corrections for compensation of the considerable
self- screening. Cohen found that the density
became approximately constant at 6~0" nvt.
The results of Senio and Tucker are only of an
exploratory nature.

No accurate density measurements on small
samples are available for does higher than
1x10~7 rgvt.

X-ray studies by Perio, Tournarie, and Gance, '
Lambert and Guinier, ' ' and Smallman and
Willis' have shown that (1) a maximum exists in
the lattice parameter versus dose curve at about
2XIO" nvf thermal neutrons; (2) below the maxi-
mum only isolated Frenkel defects exist; (3)
beyond the maximum vacancies form small clus-
ters and lithium atoms coagulate into platelets
between the (100) planes.

A comparison of density and parameter data at
and beyond the maximum presented some inter-
est. We directed therefore our attention partic-
ularly to that region.

Density was measured by flotation of the sam-
ples in suitable mixtures of bromoform, hexanol
and pentanol. By comparison with standard floats
of fused silica, and applying a technique des-
cribed earlier, ' an accuracy of 0.001% was
readily attained. A U-shaped flotation chamber
was used, one tube containing the crystals and
the other the standard float.

This method permits the use of small crystals

(platelets of about 5&5 mm, of thickness varying
between 0.3 and 0.7 mm). In this way self-
screening was kept small.

The platelets were cleaved from Harshaw sin-
gle crystals and irradiated in vacuum in the
graphite reactor BA1 at reactor temperature
(about 80'C). Thermal neutron doses were meas-
ured with indium monitors olaced with the sam-
ples. "

Results are given in Fig. 1. A logarithmic
scale is used because of the high density decrease
(up to 28% of the original value) which saturates
at 1.2%0' nvt. High stresses are generated
during irradiation, even in crystals this thin.
For doses higher than 1XLO"net the samples in
some cases break into four or five fragments.
Fragments of the same crystal have about the
same density (differences are smaller than 0.5%).
Black circles in the curve represent the mean
value of the fragments of samples which broke
during irradiation.

The spread of the measured points is not due to
inaccurate density measurements, but is mainly
caused by quite large uncertainties in the dose
measurements. Small differences in crystal
dimension and irradiation temperature also in-
fluence the density change for a given dose.

The results indicate that clusters of point de-
fects affect lattice parameter and density in a
very different way (see Seeger"). There are
some indications that the very large density
changes are partly due to the escape of fluorine
out of the crystals.

Combined measurements on the annealing be-
havior of density and lattice parameter have been
started. Preliminary density results on crystals
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FIG. 1. Relative density change of neutron-irradiated
lithium fluoride crystals as a function of dose (black
circles refer to mean values of fragments of a crystal
which broke during irradiation).
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