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were from spectroscopically pure samples ob-
tained from the Air Reduction Company. The
bulb was provided with two 0.040-in. tungsten
leads mounted at an angle of 90° and with the ends
within the bulb separated by approximately 1 cm.
The static magnetic field was 2.4 gauss, and
was modulated 10% at 15 cycles/sec with a sine
wave. At one point in each cycle a 30-Mc/sec
oscillator was pulsed on for 3 milliseconds.

This oscillator, which was coupled to the bulb
through the tungsten leads, produced a dis-
charge in the bulb, which dissociated the hydro-
gen molecules into atoms. The cell was oper-
ated at a temperature of 138°C. At this temper-
ature the bulb transmitted approximately 40% of
the incident sodium light and the radio-frequency
sodium signal was a maximum. A war surplus
T85/APT-5 grounded-grid, coaxial-line oscilla-

(c)

FIG. 1. For all of these traces the static magnetic

field is 2.4 gauss. (a) The Zeeman transitions [AF
=0, AM = + 1] in sodium. The relative gain is one.
Oscillator frequency is 1.5 Mc/sec. (b) The Zeeman
transitions [AF = 0, AM = # 1] in the hydrogen atom.
Oscillator frequency is 3 Mc/sec and the relative gain
is 10. (c) The hyperfine transition [F = 0, M=0~F
=1, M = 1] in the hydrogen atom. Oscillator fre-
quency is at 1423 Mc/sec and the relative gain is 100.
The large-amplitude noise in the trace is due to the
sodium lamp.
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tor and a two-turn solenoid 4 in. in diameter
and 4 in. long were used to produce the radio-
frequency magnetic field at 1420 Mc/sec. The
impedance matching was poor and there was in-
sufficient radio-frequency power to maximize
the hydrogen hyperfine transition signal.

Figure 1 shows three of the transitions ob-
served. Figure 1(a) is the sodium signal at the
frequency 1.5 Mc/sec. Figure 1(b) is the hydro-
gen atom low-field transition [AF=0, AM=+1]
at 3 Mc/sec. Figure 1(c) shows the hyperfine
transition [F=0, M=0~F=1, M=1]in the hy-
drogen atom at 1423 Mc/sec. The hyperfine
transition [F =0, M = 0~F =1, M =-1 was also
observed. The signal was still growing with in-
crease of radio-frequency power when the maxi-
mum power available was applied.

The signal-to-noise ratio obtained with this
simple apparatus suggests that with some im-
provements, this method could be used to re-
measure the zero-field hyperfine splittings of
hydrogen, deuterium, and tritium. This would
be especially useful in the case of tritium as one
need use only a very small sample.
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In recent years the crystallographic and elec-
trical properties of boron have received in-
creasing attention. Detailed studies on the crys-
tal structure of boron have revealed three modi-
fications, two rhombohedral types as well as
one tetragonal.! Electrical measurements? of
the resistivity as a function of temperature have
established crystalline boron as a semiconductor
with a thermal energy gap of about 1.4 ev at 0°K.
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At present very little is known of the bulk opti-
cal properties of crystalline boron. Limited
optical data have been reported on evaporated
films and on one bulk specimen of boron of un-
known purity and crystal structure.®* We have
studied the absorption and reflectivity of high-
purity boron prepared by E. S. Greiner with the
zone technique. The carrier concentrations are
approximately 10'® cm™3 and the wavelengths
range between 0.7 p and 30 p. The specimens
were of the rhombohedral type' with 107 or 108
atoms per unit cell. In Fig. 1 the reflectivity R
of a polished boron specimen is shown. Unlike
the elementary semiconductors silicon and ger-
manium, boron exhibits considerable variation
of R, particularly near 21 u. The wavelength
dependence of R suggests a region of anomalous
dispersion near 21 p and a corresponding strong
resonance absorption band is expected. Infrared
transmission measurements on boron powder
embedded in a KBr pellet are also seen in Fig.
1. They clearly show a strong absorption band
at 21 p in agreement with the reflectivity data.
In addition, several absorption bands of smaller
intensity appear at shorter wavelengths: 10.2 u,
10.9 p, 11.8 p, 13.3 pu, 14.7 p and 16.2 p. These
bands are superimposed upon a scattering back-
ground due to particle size (dashed curve). In
Fig. 2 the transmission of a polycrystalline
boron specimen (crystallite size ~% mm) is
presented for three different thicknesses: 1.3,
0.15, and 0.05 mm. Even the thickest sample
exhibits considerable transmission between

1.5 p and 4.5 p. After thinning the specimen,
extensive structure is observed in the transmis-
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FIG. 1. Reflectivity of crystalline boron and trans-
mission of boron powder (same material) as a func-
tion of wavelength.

sion measurements as can be seen in Fig. 2. A
series of bands at 4.5 i, 6.3 u, 8.1 i, 9.3 u,
9.7 i, and 10.1 y are revealed. Low transmission
between 10.8 p and 11.8 p and for » >12.6 p in-
dicate additional strong absorption bands in
these wavelength ranges. The stronger bands
with absorption coefficients of the order of
10°cm™ and larger agree favorably with those
obtained from the KBr pellet and are believed to
be lattice absorption bands of elementary boron.
They are responsible for the small scale varia-
tions of the reflectivity between 10 p and 15 p.

1t is interesting to note that the reflectivity
value suggests a dielectric constant of € =8.4
+0.4 for wavelengths smaller than 20 y while €
=10.0+0.5 is indicated for A >25 p. Since capa-
city measurements® at 10 kc/sec give € = 14, one
or more additional regions of dispersion at
larger wavelengths have to be expected. Optical
dispersion is commonly known for ionic crys-
tals and has been found recently in intermetallic
compounds (e.g., III-V compounds).* It is be-
lieved that the small but distinct dispersion ob-
served in this boron modification is the result

of significantly different electron distributions
about crystallographically nonequivalent atoms.
Whether the observed dispersion corresponds to
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FIG. 2. Transmission of crystalline boron versus
wavelength for three thicknesses of the specimen.
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the vibration of specific boron atoms or to vi-
brations of certain atom groups cannot yet be
stated.

As can be seen from Fig. 2, the transmission
of boron decreases strongly for wavelengths
smaller than approximately 2 u. A plot of the
calculated absorption coefficient as a function of
photon energy indicates that {(wo absorption
mechanisms are present. The absorption rises
rapidly with increasing energy for 2v>1.2 ev.
This sharp rise is considered to correspond to
optical transitions across the forbidden energy
gap. For 0.6 ev<Zv<1.2 ev, the absorption in-
creases less rapidly with the photon energy.
Several possible causes may be cited for this
latter absorption: transitions to or from states
within the forbidden gap, interband transitions
arising from a complicated band structure,
scattering effects due to lattice imperfections.
A more detailed study of these questions is in
progress.

We wish to acknowledge the aid of J. A. Gutow-
ski who prepared some of the specimens for the
measurements and G. Sorin who helped in taking
some of the infrared data.
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All past atomic beam resonance experiments
have been limited to cases in which the atoms
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undergo no collisions between the source and
the detector. However, several years ago
Ramsey's? pointed out that the separated oscilla-
tory field resonance method® in principle could
be extended to cases in which the atoms in the
beam were subject to collisions either with other
atoms or with suitable solid surfaces in the re-
gion between the two oscillatory fields. It was
pointed out? that such experiments not only
would provide information on the nature of the
collisions but also might make possible reso-
nance experiments of unprecedented accuracy if
the atoms could be stored for considerable
lengths of time in a box with suitable surfaces.
It is the purpose of the present note to point
out the first success of such a broken atomic
beam experiment. The arrangement of the appa-
ratus for the experiment was as shown in Fig.
1. Cesium atoms from a heated oven emerged
into a six-pole deflecting magnetic field* region
from which only the atoms in the hyperfine state
F = 4 could emerge. The atoms then entered
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FIG. 1. Experimental arrangement of the broken
atomic beam.

the first oscillatory field region followed by a
small box of such a configuration that no atom
could pass through the box without undergoing at
least two wall collisions. The atoms then en-
tered the second oscillatory field region which
was followed in turn by another six-pole deflect-
ing magnetic field through which only F = 4
atoms could pass. The characteristic Ramsey
separated oscillatory field resonance pattern®
was then sought corresponding to atomic transi-
tions between the F =4, M=0 and F=3, M
=0 state.

The first box tried possessed walls of un-
heated teflon. With these no Ramsey pattern
could be observed in the emerging beam, though
a pattern corresponding to transitions in a
single microwave cavity was observed. How-
ever, when the box was heated to 100°C the
characteristic Ramsey pattern was observed,
despite the fact that the atoms of the beam had
to undergo at least two collisions between the



