ELECTRON POLARIZATION IN THE β -DECAY OF RaE[†]

Wolfgang Bühring and Joachim Heintze

Zweites Physikalisches Institut der Universität Heidelberg Heidelberg, Germany (Received July 22, 1958)

The β -decay of RaE(Bi²¹⁰) is a first-forbidden transition $(1 \rightarrow 0^+)$. The energy spectrum of a nonunique first-forbidden transition usually has the statistical shape and the electron polarization is P=-v/c, as in allowed transitions.¹ It is well known,² however, that the spectrum of RaE departs from the statistical shape substantially. Due to a particular relation between the nuclear matrix elements, the normally dominating energy-independent Coulomb terms are small and the energy-dependent terms come into play. Consequently one expects in this case the electron polarization to deviate from the normal value P=-v/c. Indeed, Geiger et al.³ have found in a Moeller scattering experiment a smaller effect for RaE than for some other β -emitters investigated.

We have measured the polarization of RaE electrons using a method described in detail in previous publications,⁴ which is suitable for accurate relative measurements of the electron polarization of two β emitters having similar energy distributions. The instrument is sensitive for electrons in an energy range from ~ 250 kev to ~ 600 kev. In this method the elec trons are first deflected by multiple scattering with a thick Cu scatterer and then by single scattering at a thin Pt or Au foil. The scattering angles are 90° and 135°, respectively. The multiple scattering turns the original longitudinal polarization of the electrons into a polarization having a well defined transversal component, which in turn is measured by the azimuthal asymmetry of the single scattering. The asymmetry x is obtained from the ratio of the counting rates L (left) and R (right) of two β counters mounted at 135° with respect to the beam incident on the single-scattering foil: $L/R = \alpha (1-x)/(1+x)$. The factor α , arising from the difference in counter efficiencies, can be eliminated by interchanging the counters, a procedure easily possible in our arrangement. The relationship between x and the polarization can be written in

the following form⁵:

$$x = -f_N \frac{\int (Pc/v)N(E) w(E) dE}{\int N(E) w(E) dE}$$

= $-f_N \left\langle \frac{P}{v/c} \right\rangle_{Av}$ (1)

N(E) being the β spectrum and w(E) the total efficiency of the apparatus for electrons of energy E. The factor f_N depends on the energy distribution of the β particles. The essential point is that this dependence is small in our experimental arrangement. This is the case even for comparatively thick single-scattering foils. A foil of 2.03-mg/cm² Pt has turned out to be suitable.

We have compared the experimental asymmetry x of RaE ($E_{\max} = 1.15$ Mev) with that of Tl²⁰⁴ ($E_{\max} = 0.76$ Mev) and Y⁹¹($E_{\max} = 1.54$ Mev). Tl²⁰⁴ and Y⁹¹ are unique first-forbidden transitions and therefore have the polarization $P=-v/c.^{1}$ The results are as follows:

$$\begin{aligned} x(\mathrm{Tl}^{204}) &= f_N(\mathrm{Tl}^{204}) = (6.42 \pm 0.05)\%, \\ \frac{x(\mathrm{Y}^{91})}{x(\mathrm{Tl}^{204})} &= \frac{f_N(\mathrm{Y}^{91})}{f_N(\mathrm{Tl}^{204})} = 1.016 \pm 0.014, \\ \frac{x(\mathrm{RaE})}{x(\mathrm{Tl}^{204})} &= \frac{f_N(\mathrm{RaE})}{f_N(\mathrm{Tl}^{204})} \left\langle \left(-\frac{P}{v/c}\right)_{\mathrm{RaE}} \right\rangle_{\mathrm{Av}} \\ &= 0.832 \pm 0.018. \end{aligned}$$

These data are mean values of two independent statistically consistent sets of measurements with two RaE sources differing in their effective thickness by a factor of 3. The following cor – rections have been applied:

(1) Corrections for the instrumental asymmetry. This asymmetry has been measured and the correction shifts the final result by 2%.

(2) Corrections for the depolarization in the source, based on experimental and theoretical results. In the most unfavorable case, this correction amounts to $(3 \pm 1.5)\%$.

It remains to consider the influence of the β spectra on f_N . Experimentally we have obtained f_N (Tl²⁰⁴)= f_N (Y⁹¹). We have investigated in detail the energy dependence of f_N . It turns out that within an error of <1%, we have $f_N(\text{RaE})/f_N(\text{Tl}^{204}) = 1$. The electron distributions, $N(E) \times w(E)$, of Tl²⁰⁴ and RaE are much more alike than those of Tl²⁰⁴ and Y⁹¹, as can be seen from Fig. 1. We obtain, for the average electron polariza –

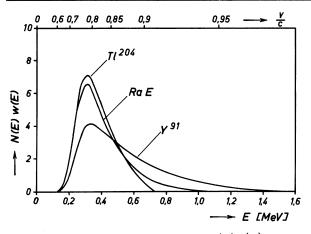


FIG. 1. The electron distributions N(E)w(E) are plotted in arbitrary units. N(E) is the β spectrum, w(E) the total efficiency of the apparatus for electrons of energy E. w(E) has been calculated approximately.⁴

tion defined in Eq. (1) for RaE,⁶

$$\left\langle -\left(\frac{P}{v/c}\right)_{\text{RaE}}\right\rangle_{\text{Av}} = 0.83 \pm 0.02.$$

RaE is the first example of a β emitter which has an electron polarization clearly deviating from P = -v/c. Curtis and Lewis⁷ have calculated formulas for the polarization and the spectrum shape factor of RaE using *STP* coupling. For *VA* coupling⁸ the formulas are easily obtained by changing the nuclear matrix elements and coupling constants and reversing the sign of the neutrino momentum, ⁵ if the two-component theory of the neutrino is valid. The β decay of RaE is governed by three nuclear matrix ele ments, $\int \vec{\sigma} \times \vec{\mathbf{r}}$, $\int \vec{\mathbf{r}}$, $\int \vec{\alpha}$. It is convenient to introduce two real^{9, 10} parameters ξ_1 and η_1 by the relations

$$\xi_{1}C_{A} \int \vec{\sigma} \times \vec{\mathbf{r}} = iC_{V} \int \vec{\mathbf{r}},$$

$$\eta_{1}C_{A} \int \vec{\sigma} \times \vec{\mathbf{r}} = \left(\frac{\alpha Z}{2\rho}\right)^{-1} C_{V} \int \vec{\alpha},$$
 (2)

since both the spectrum shape and the polariza tion are dependent on these two parameters only (the unexplained symbols are defined by Konopinski¹¹). For a quantitative discussion of the polarization measurement one has to determine ξ_1 and η_1 by fitting the experimental (2) spectrum shape factor to the theoretical one and to calculate the polarization using these values. To get a rough idea we can use the approximation $\alpha Z <<1$, $p \rho <<1$, which really is not well satisfied by RaE. Then the polarization can be written conveniently as

$$P = -\frac{v}{c} \frac{X(W,\xi_1,\eta_1) - Y(W,\xi_1,\eta_1)}{X(W,\xi_1,\eta_1) - (\frac{v}{c})^2 Y(W,\xi_1,\eta_1)}$$
(3)

(*W* is the electron energy, the functions X and Y can be obtained with the help of reference 7.) It can be seen that a deviation of -P/(v/c) from 1 must occur for $v/c \neq 1$.

A more detailed description of this experiment can be found in reference 5.

Thanks are due to Professor O. Haxel for his interest in this work.

[†]Supported in part by the Deutsche Forschungsgemeinschaft.

¹ Berestetsky, Ioffe, Rudik, and Ter-Martirosyan, Nuclear Phys. <u>5</u>, 464 (1958).

2 E. A. Plassmann and L. M. Langer, Phys. Rev. 96, 1593 (1954).

³ Geiger, Ewan, Graham, and Mackenzie, Bull. Am. Phys. Soc. Ser. II, <u>3</u>, 51 (1958).

4 J. Heintze, Z. Physik 148, 560 (1957); J. Heintze, Z. Physik 150, 134 (1958).

⁵ W. Bühring and J. Heintze, Z. Physik (to be published).

⁶ This result was reported at the Conference on Nuclear Physics in Paris, July, 1958 (unpublished). Similar results obtained by Geiger, Ewan, Graham, and Mackenzie were reported at the same conference. ⁷ R. B. Curtis and R. R. Lewis, Phys. Rev. 107,

⁸ Hermannsfeld, Maxson, Stähelin, and Allen, Phys.

Rev. <u>107</u>, 641 (1957); Goldhaber, Grodzins, and Sunyar, Phys. Rev. <u>109</u>, 1015 (1958); Lauterjung, Schimmer, and Maier-Leibnitz, Z. Physik <u>150</u>, 657 (1958); Burgy, Krohn, Novey, Ringo, and Telegdi, Phys. Rev. 110, 1214 (1958).

9 We assume reality of the β - coupling constants. 10 C. L. Longmire and A. M. L. Messiah, Phys. Rev. 83, 464 (1951).

11 E. Konopinski, in <u>Beta-and Gamma-Ray Spec-</u> <u>troscopy</u>, edited by K. Siegbahn (North-Holland Publishing Company, Amsterdam, 1955), chap. 10.

DETERMINATION OF THE PARITIES OF STRANGE PARTICLES FROM DISPERSION RELATIONS*

Saul Barshay[†] Brookhaven National Laboratory, Upton, New York (Received July 29, 1958)

Several authors $^{1-3}$ have recently suggested that the parities of the $K-\Lambda$ and $K-\Sigma$ systems relative to the nucleon might be determined