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Efficient dynamic mixed subgrid-scale model
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It is well known that the scale-similarity class of subgrid models have a high correlation
with the actual subgrid stresses in a priori tests. However, these models are typically
underdissipative and not robust enough to be practically useful for large-eddy simulation.
On the other hand, the dynamic Smagorinsky model (DSM), which is a popular subgrid
model, is sufficiently dissipative and robust, but has a lower correlation with actual subgrid
stresses in a priori tests. There have been many successful attempts to combine the two
models into a “mixed” subgrid model that have typically retained the favorable properties
of both. However, most dynamic mixed models require two or more levels of test filtering
beyond the (often implicit) grid filtered quantities that are solved, in contrast to a single test
filtering operation for the dynamic Smagorinsky model. The additional cost involved in test
filtering has likely hindered the widespread use of dynamic mixed models in production
codes. We propose an efficient dynamic mixed model that is constrained to have the same
subgrid dissipation as the DSM model, and only requires a single level of test filtering.
Thus, the additional computational cost is negligible compared to the DSM model. A
posteriori simulations of the turbulent channel flow reveal that the proposed mixed model
is as robust as the DSM model, and more accurate on coarser grids. Notably, smooth-body
turbulent separation is better captured by the new model when combined with a standard
wall model.

DOI: 10.1103/PhysRevFluids.9.L092601

Many practical flows are turbulent in nature, e.g., those over cars, airplanes, and submarines;
predicting its various aspects accurately is a crucial component of the design. Advances in high-
performance computing (HPC) are enabling the use of large-eddy simulation (LES) for complex
configurations at Reynolds numbers of practical interest. LES subgrid-scale (SGS) modeling has
been an active research area for over half a century, starting from the seminal work of Smagorin-
sky [1], and a number of review papers have summarized the developments in the field [2–4].
Nevertheless, there is still a need for improved SGS models, especially on coarse grid resolutions
and varying grid anisotropies.

When the incompressible Navier-Stokes equations are filtered (denoted by )̃ by a suitable
mathematical definition, we solve for velocity and pressure (̃ui, p̃), and obtain a closure term for
the subgrid stress (τ sgs

i j ) that requires modeling:

τ
sgs
i j = ũiu j − ũiũ j . (1)
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While different definitions and interpretations of the filter are available in literature,̃ is taken to be
the (implicit) spatial-grid filter corresponding to the grid size (�). Note also that different types of
errors due to the filtering operation such as modeling and commutation error are absorbed into this
modeling term. Two popular LES SGS models, the dynamic Smagorinsky model (DSM) [5,6] and
the scale-similarity model (SSM) [7,8], are shown below:

τDSM,d
i j = −2νDSM

sgs S̃d
i j, (2)

νDSM
sgs = cd�

2 |̃S|, cd�
2 = 〈Li jMi j〉

〈Mkl Mkl〉 , Mi j = 2
(
̂|̃S|̃Sd

i j − α2 |̂̃S |̂̃Sd

i j

)
, (3)

τ SSM
i j = Li j = ̂̃uiũ j −̂̃uîũ j . (4)

Here, the superscript d denotes the deviatoric part of the tensor,̂denotes test filtering at α�, and
〈 〉 denotes averaging along homogeneous spatial directions and/or suitable Eulerian/Lagrangian
temporal averaging [9]. Note that both models are dynamic in nature due to the dependence on test
filtered quantities. The DSM model assumes a linear dependence of τ

sgs,d
i j on the resolved strain-rate

tensor (̃Sd
i j) through a scalar eddy viscosity (νsgs) that is not accurate in general [8,10,11]. Note that

typically α ≈ 2 for the DSM model [5] and recent versions of the SSM model [8], while α = 1
for the original SSM model proposed by Bardina [7]. While the SSM model produces excellent
estimation of τ

sgs
i j in a priori tests [7,10], it is insufficiently dissipative to be robust in practical

applications. Notably, it underpredicts the subgrid dissipation of the resolved kinetic energy, which
is deemed to be an important quantity in LES modeling. On the other hand, the DSM model
performs poorly in estimating τ

sgs
i j in a priori tests, but predicts the subgrid dissipation well [3], and

consequently is sufficiently robust in practical applications. It is desirable to accurately predict both
aspects well, especially on coarser grids and varying grid anisotropies. This has motivated mixed
subgrid models of the following form [8,12–15], which generally appear to retain the benefits of
both models:

τmixed
i j = τ SSM

i j − 2νmixed
sgs S̃d

i j . (5)

While initial attempts used a fixed constant to compute the eddy viscosity, it could make the
model overly dissipative; also, dynamic computation of the constant is more accurate for a number
of flow phenomena such as transitional regions and for near-wall damping, among others. The
Germano identity procedure [5,16] is widely used to dynamically compute constants for LES
models, and notably it increases the number of test filtering operations required by one (or more)
compared to the baseline model form. The DSM model [Eq. (2)] for instance, explicitly depends
only on ,̃ but the Germano procedure for computing cd requires one additional level of test filtering
(̂ ). The dynamic mixed models (DMMs) of Zang et al. [12] and Liu et al. [8] require two levels
of test filtering (beyond the baseline grid filter) since the Germano identity procedure is directly
used on Eq. (5) which already has one level of test filtering due to the τ SSM

i j term. Vreman et al. [13]
suggested that the DMMs be modified to have three levels of test filtering to be more mathematically
consistent. The test filtering operation adds significant computational cost for parallel production
codes due to the additional communication cost involved (more so on modern computing hardware
such as GPUs), and hence it is desirable to minimize such operations in the SGS model for efficiency
purposes. Our proposed efficient dynamic mixed model accomplishes this by instantaneously setting
the subgrid dissipation of the mixed model to that predicted by the DSM model in lieu of the
Germano identity procedure on Eq. (5). Note that one could obtain an efficient model by replacing
the SSM model with Clark’s gradient model [10] as done by Vreman [17], but that requires the added
complexity of defining anisotropic filters [18,19], which may be nontrivial for different unstructured
grid topologies. Note that the only required filter-related input for the DSM model (and mixed
SSM/DSM model) is the ratio of filter widths (α) as cd�

2 is dynamically computed. The idea of
using the subgrid dissipation as a constraint is not entirely new [20–23], although, to the best of the
authors’ knowledge, it has not been done for the dynamic mixed model to produce an efficient model
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with a single level of test filtering with the same communication cost as the SSM or DSM models.
The proposed model also explicitly accounts for the subgrid dissipation provided by the SSM model,
which may be sufficient on finer grids, thus requiring a negligible eddy-viscosity contribution for
stabilization (see fine grid channel wall-resolved LES results for instance). Our proposed model
taking τ SSM

i j = Li j is given below:

τmixed
i j S̃d

i j ≈ τDSM,d
i j S̃d

i j, (6)

νmixed
sgs = νDSM

sgs + 1

2

Li j S̃d
i j

S̃d
kl S̃

d
kl

. (7)

While it may be desirable to use Eq. (7) directly, in practice, we regularize the numerator and
denominator of the right-hand side term by suitable averaging (〈 〉) and we clip negative values of
νmixed

sgs for numerical stability, both of which are analogous to what is done for the DSM model.
Thus, the final model reads as follows:

τmixed
i j = Li j − 2νmixed

sgs S̃d
i j, (8)

νmixed
sgs =

[
νDSM

sgs + 1

2

〈
Li j S̃d

i j

〉〈̃
Sd

kl S̃
d
kl

〉]
+
. (9)

Here, [φ]+ = 0.5(φ + |φ|). Note that instead of modifying νsgs in Eq. (7), one could instead
alter the Smagorinsky coefficient cmixed from the DSM value cd , although it is not clear whether
this would improve the accuracy or robustness. We implicitly assume in Eq. (5) that τmixed

kk = Lkk ,
but our numerical tests with alternate definitions set to 0 or the Yoshizawa model [24] gave nearly
identical results for low Mach number flows as expected. Here, the standard procedure is used to
compute νDSM

sgs [Eqs. (2) and (3)]. Extension of the DSM model to the proposed mixed model is
fairly straightforward—all the required terms are already used in the DSM model computation.
The new model thus acts as a “correction” step with under 5% additional computational cost
(which can presumably be optimized further) compared to the DSM model. While the mixed model
combines the benefits of both the DSM and SSM models, admittedly, some of the deficiencies of the
two models are also likely inherited: ad hoc clipping and spatial/temporal regularization of eddy
viscosity (from DSM), and poorer a priori correlations for a sharp spectral cutoff filter (from SSM).

We evaluate the proposed model using a posteriori LES for (i) wall-resolved LES (WRLES) of
turbulent channel flow at Reτ ≈ 550, (ii) wall-modeled LES (WMLES) of turbulent channel flow
at Reτ ≈ 2000, and (iii) WMLES of turbulent smooth-body separation over a smooth Gaussian
bump at upstream Reτ ≈ 600. WMLES test cases are included since practical LES applications
would likely involve wall modeling due to prohibitive near-wall grid requirements at high Reynolds
numbers. Results from two grid resolutions are shown for each case, and compared to those
from the DSM model and available reference high-fidelity data. The CharLES solver1 is used,
which is a compressible, cell-centered, low numerical dissipation, nominally second-order accurate,
unstructured grid solver [25]. The explicit third-order Runge-Kutta method is used for time stepping.
The solver has been validated for a wide range of LES problems using the DSM model [26]. The
ratio of test-to-grid filter is set to α2 = 5 based on the recommendation of Vreman et al. [11], and test
filtering is performed by averaging values at the nodes (computed by averaging across cells sharing
the node). For some of the cases simulated, the solver is numerically unstable in the absence of an
SGS model, and hence we report the results using the proposed mixed model and the DSM model.
All the results were simulated at a reference Mach number of 0.2 at which compressibility effects are
expected to be negligible for the quantities of interest reported. The channel flow simulations were
run with a source term in the x-momentum equation (and a corresponding term in the total energy

1Cascade Technologies, currently Cadence.
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FIG. 1. The variation of time- and spanwise-averaged (a) horizontal velocity (u), (b) turbulent shear stress
(u′v′), and (c) mean subgrid viscosity (μsgs) are shown for wall-resolved LES of Reτ ≈ 550 flow. Legend: (red
solid) DSM model, (blue solid) mixed model, and (�) DNS of Lee and Moser [27]. Dashed and solid lines
represent coarse and fine grid results, respectively.

equation) computed at each time-stepping stage to maintain a constant reference bulk velocity. Note
that averaging along homogeneous directions were used for terms in the SGS models involving 〈 〉
and for computing statistics—along x and z for channel flow cases, and z for the bump flow.

WRLES of turbulent channel flow at Reb = ρbubh/μw = 10 000 was performed using a struc-
tured hexahedral grid on a domain spanning Lx, Ly, Lz = 8h, 2h, 3h, where h is the channel half
width, with periodic boundary conditions in the streamwise (x) and spanwise (z) directions. The
flow conditions match the DNS of Lee and Moser [27] with an expected Reτ ≈ 550. The viscous
spacings were �x+,�y+,�z+ = 30, 1.3–31, 14, with Nx, Ny, Nz = 150, 65, 122 for the fine grid.
The coarse grid had 2× spacings in the streamwise and spanwise directions. Results for the DSM
and proposed mixed model are shown in Fig. 1. The statistics were averaged over a period of
about 15h/uτ . Time- and spatially averaged velocity, turbulent shear stress (modeled and total),
and eddy viscosity are shown in the figure. The mixed model yields superior predictions on both
grids compared to the DSM model in terms of both velocity and turbulent shear stress. The error in
time- and spatially averaged skin-friction prediction [c f = τw/(0.5ρbu2

b)] compared to the reference
DNS data is −11.3%, +7.2%, −7.6%, and +1.4% for the coarse DSM, coarse mixed model, fine
DSM, and fine mixed model, respectively. The eddy viscosity is much lower for the mixed model
compared to the DSM model, and nearly zero for the fine grid (likely due to the resolution chosen),
indicating that the majority of the subgrid dissipation is coming from the SSM model term. It is
interesting to note that on sufficiently fine grids, the SSM term substantially contributes to the SGS
dissipation. Also, notably, the modeled stresses are larger in magnitude (by a factor of 4–6) for the
mixed model when compared to the DSM model. The larger modeled stresses for the mixed model
suggest that it might be more accurate on coarser grids since it needs to resolve a smaller fraction
of the turbulent stresses, although this needs to be thoroughly investigated in the future.

WMLES of turbulent channel flow at Reb = ρbubh/μw = 43 500 was performed using isotropic,
uniform, structured hexahedral grids on a domain spanning Lx, Ly, Lz = 2πh, 2h, πh, where h is
the channel half width, with periodic boundary conditions in the streamwise (x) and spanwise (z)
directions. The flow conditions match the DNS of Lee and Moser [27] with an expected Reτ ≈ 2000.
The viscous spacings were �+

i = 100 (200), with 20 (10) points per channel half width for the
fine (coarse) grid. The equilibrium wall model [28] was used with an exchange location of 0.2h
for both grids. The statistics were averaged over a period of about 30h/uτ . Time- and spatially
averaged velocity, turbulent shear stress (modeled and total), and eddy viscosity are shown in
Fig. 2 comparing results using the DSM and mixed models. Both models yield accurate velocity
predictions between y/h ≈ 0.1 and 0.5, with near-wall errors dominating for the DSM model and
larger errors in the outer layer for the mixed model. Both models accurately predict the total
turbulent shear stress, with the mixed model being marginally more accurate closer to the wall. Here
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FIG. 2. The variation of time- and spanwise-averaged (a) horizontal velocity (u), (b) turbulent shear stress
(u′v′), and (c) mean subgrid viscosity (μsgs) are shown for wall-modeled LES of Reτ ≈ 2000 flow. Legend:
(red solid) DSM model, (blue solid) mixed model, and � DNS of Lee and Moser [27]. Dashed and solid lines
represent coarse and fine grid results, respectively. EL refers to the exchange location at which data were input
to the wall model.

again, the modeled stresses are larger in magnitude (by ≈3 times) for the mixed model. The error in
time- and spatially averaged skin-friction prediction [c f = τw/(0.5ρbu2

b)] compared to the reference
DNS data is +0.5%, +5.2%, +2.9%, and −2.9% for the coarse DSM, coarse mixed model, fine
DSM, and fine mixed model, respectively. The eddy viscosity is again lower for the mixed model
compared to the DSM model, but larger in magnitude compared to the WRLES case that had a finer
grid resolution in terms of viscous units. Overall, both models yield good predictions for this case.
While isotropic grids were used here, it might be interesting to examine the performance of the SGS
models on anisotropic grids, and assess any potential benefits of the mixed model in such situations.

WMLES of turbulent smooth-body separation over a Gaussian-shaped bump was simulated at
ReL = ρ∞u∞L/μ∞ = 2 million, where L is the length of the bump, and the Mach number M∞ =
u∞/a∞ = 0.2. The shape of the bump is given by y(x) = h0 exp(−(x/x0)2), with h0 = 0.085L
and x0 = 0.195L. Past studies have indicated that the subgrid model has a dominant effect on the
predictions for this flow configuration [29–31], thus making it a useful case for assessing subgrid
models. The configuration setup matches the DNS of Uzun and Malik [32]. The top wall is at
y/L = 1 where freestream boundary conditions are imposed, the inflow plane is at x/L = −0.67
where synthetic turbulence inflow boundary conditions are imposed using averaged velocity and
turbulent stresses from DNS, and the outflow is at x/L = 2. The grid is extruded along the span
with a constant spacing, with periodic boundary conditions imposed. Table I lists the grid spacings
used for the fine grid along with those used in the DNS. Note that this grid has about 20 and 30–40
points within the boundary layer thickness at x/L = −0.6 and 0, respectively. It also has about
10 points within the internal layer at x/L = 0. The grid was designed based on insights from past
studies [29,33,34]. Snapshots of the grid in the x-y plane are shown in Fig. 3. Note that the grid
is isotropic in this plane, and the grid spacing increases based on the distance from the wall. The
coarse grid has 2× spacings in all directions compared to the 20 million cell fine grid, and contains

TABLE I. Grid spacings for the fine grid WMLES (fWMLES) compared to the DNS of Uzun and
Malik [32].

�+
wall �+

wall
Grid Lz/L �z/L (x/L = −0.5) (x/L = 0)

DNS 10.2 billion 0.08 1.1 × 10−4 3.6, 0.6, 8.5 8, 1, 6
fWMLES 20 million 0.08 5 × 10−4 38, 19, 38 32, 32, 64
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FIG. 3. Snapshots of the grid in a constant spanwise plane (a) over the entire domain, and (b) in the vicinity
of separation.

about 6 million points. The equilibrium wall model [28] was used with an exchange location of
5 × 10−4L for all the simulations, which corresponds to the second grid point for the fine grid. The
statistics were averaged over a period of about 8L/u∞.

The variation of averaged wall pressure and skin-friction coefficient are shown for both grids,
and the DSM and proposed mixed model in Fig. 4. The coarse grid results do not predict sufficient
separation for both the SGS models possibly due to the lack of resolving the internal layer and other
intricate nonequilibrium dynamics that is responsible for flow separation—the mixed model does
marginally better than DSM though. The fine grid mixed model results show excellent agreement
with DNS, in contrast to the DSM model which fails to predict any separation at all. These results
are generally consistent with the trend of non-eddy-viscosity SGS models performing better for
this flow configuration for WMLES [29,30] and WRLES [35]. Note that refining the grid further
might place it in a WRLES realm, thus defeating the purpose of using WMLES. It is of interest
to point out that the DSM model does predict separation (though it underpredicts the size) on a
similar resolution polyhedral grid [29,30,33,34], while a recent study found that the model did not
predict any separation even on a much finer (993 million) hexahedral-dominant grid [31] (consistent
with the present results), although the reasons for the differences are unclear. Averaged velocity
and turbulent shear stress profiles are shown for the fine grid at x/L = −0.2, 0, and 0.2, which
correspond to favorable, inflectional, and adverse pressure gradient regions in Fig. 5. While the
DSM model results are reasonable at x/L = −0.2, the mixed model shows substantially improved
velocity and stress predictions overall. Some differences between the mixed model results and DNS
may be due to the limitations of the equilibrium wall model used here. Overall, the fine grid mixed
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FIG. 4. The variation of time- and spanwise-averaged wall (a) pressure coefficient (Cp) and (b) skin-friction
coefficient (Cf ) for the speed bump flow. Legend: (red solid) DSM model, (blue solid) mixed model, and (�)
DNS of Uzun and Malik [32]. Dashed and solid lines represent coarse and fine grid results, respectively.
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FIG. 5. Profiles of time- and spanwise-averaged (a)–(c) horizontal velocity (u/u∞), and (d)–(f) turbulent

shear stress (u′v′/u2
∞) is shown for the speed bump flow at (a), (d) x/L = −0.2, (b), (e) x/L = 0, and (c), (f)

x/L = 0.2 for the fine grid. Legend: (red solid) DSM model, (blue solid) mixed model, and (�) DNS of Uzun
and Malik [32]. EL refers to the exchange location at which data were input to the wall model.

model WMLES shows excellent agreement with DNS for this complex flow configuration in spite
of using a substantially coarser grid (500×).

We proposed an efficient dynamic mixed subgrid model with a single level of test filtering by
using an SGS dissipation constraint in lieu of the Germano identity procedure to combine the scale-
similarity and dynamic Smagorinsky models. The model was evaluated on wall-resolved LES of a
turbulent channel, and wall-modeled LES of a turbulent channel and smooth-body separation using
an unstructured solver at two grid levels. The model was robust for all the simulations, and generally
gave encouraging and improved predictions compared to the DSM model for the grid resolutions
used. Notably, it produced substantially more accurate results for turbulent smooth-body separation,
which is a challenging phenomenon to predict. Future work will involve assessing the model on
more applications and grid topologies/anisotropies.
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