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Inspired by the thought-provoking paper of Meneveau and Marusic [J. Fluid Mech.
719, R1 (2013)], the universal expression of the self-scaling generalized Townsend-Perry
constants for the high-order statistical moments is investigated. The measured results
deviate from the previous attached-eddy-model–based Gaussian prediction because the
wall-non-attached eddies with sub-Gaussian statistics mask the Gaussian behavior of
the wall-attached eddies. Leveraging the generalized Gaussian distribution function and
the logarithmic law for turbulence intensity, the universal expression of the self-scaling
generalized Townsend-Perry constants, regardless of the eddy type, is derived. Moreover,
asymptotic expression of the shape parameter in self-scaling generalized Townsend-Perry
constants with Reynolds number is further characterized by data in boundary layers and
atmospheric surface layers with Reynolds number Reτ spanning over O(103) to O(106).

DOI: 10.1103/PhysRevFluids.9.L082602

Introduction. High-Reynolds-number turbulent boundary layers are ubiquitous in nature and
industrial applications. A universal feature of these flows, and one that is extensively relied upon for
modeling purposes, is the logarithmic law. In the logarithmic layer, the logarithmic law as a function
of the distance from the wall z applies for the streamwise mean velocity U [1,2],

U + = 1

κ
ln(z+) + B, (1)

where U + ≡ U/Uτ and z+ ≡ zUτ /ν. Uτ , ν and κ are the friction velocity, kinetic viscosity and
Kármán constant, respectively. B is a parameter dependent on the roughness of the wall.

Another notable nature is the log behavior for the streamwise velocity variance in boundary lay-
ers. Townsend [3] proposed that the flow field is occupied by an array of wall-attached, self-similar,
energy-containing eddies. Their sizes are proportional to z, and the population density inversely
varies with the size and hence with z. A phenomenological model of wall-attached eddies was
then proposed based on Townsend’s attached eddy hypothesis (AEH) and called the attached eddy
model (AEM). Following the AEM to its logical conclusion, when the scale separation is sufficient
(i.e., in high-Reynolds-number flows), the streamwise velocity variance (turbulence intensity) is a
logarithmic function of the wall-normal distance z, i.e.,

〈u2〉+ = B1 − A1 ln(z/δ), (2)

where δ is the outer length scale, which is the boundary-layer thickness, channel half-height, and
pipe radius for the turbulent boundary layer (TBL), channel, and pipe flows, respectively. A1 is called
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the Townsend-Perry constant, and B1 is a parameter dependent on the flow conditions and geometry.
Valid supports for the existence of this logarithmic law have come from subsequent experimental
studies [1,4–7].

Later, Meneveau and Marusic [8] extended the logarithmic law to the pth root of the 2p-order
moments of streamwise velocity fluctuations and proposed the existence of generalized Townsend-
Perry constants. The generalized logarithmic law for the high-order moments of the streamwise
velocity fluctuations follows

〈u+2p〉1/p = Bp − Ap ln(z/δ), (3)

where 2p (p � 1) is the moment order. For Gaussian statistics, the generalized Townsend-Perry
constants Ap are expected to be Ap = A1[(2p − 1)!!]

1/p
(!! is the double fractional), and Bp is the

additive constant for high-order moments. However, although Meneveau and Marusic [8] validated
the generalized logarithmic decay for high-order moments in TBLs at 2800 � Reτ � 19030 (Reτ ≡
δUτ /ν), the slopes Ap were found to be lower than the Gaussian prediction A1[(2p − 1)!!]

1/p
.

This deviation (sub-Gaussian behavior) indicates the insufficiency of the Gaussian distribution.
Subsequently, the logarithmic decay for high-order moments and the deviation behavior of mea-
sured generalized Townsend-Perry constants Ap from the Gaussian prediction were widely found
in experiments [9–11]. Notably, a multitude of coexisting eddies of different types are filled in
high-Reynolds-number flows, the eddies that cannot be described by the AEM (e.g., the global
model motions described in Baars and Marusic [12]) and the interaction [13] may have an impact
on the predicted generalized Townsend-Perry constants Ap. In this scenario, taking these factors into
consideration, high-Reynolds-number data with larger scale separation and a suitable separation
method are desired to investigate this issue.

In the following, high Reτ [∼ O(106)] synchronous observational atmospheric surface layer
(ASL) data are used here to determine the existence of (sub-) Gaussian statistics in (3), and the
universal expression of the self-scaling generalized Townsend-Perry constants Ap/A1 are determined
based on the theoretical analysis and experimental validation.

Experimental data. The dataset employed in this study is acquired from Liu et al. [14] at
Reynolds number Reτ ∼ O(106) measured at the Qingtu Lake Observation Array (QLOA) site
in western China, using a wall-normal array of eleven sonic anemometers under near-neutral
stratification conditions. Detailed information on the experimental setup and data preprocessing
can be found in Wang and Zheng [6]. Additional data used for determining the parameter are
from the High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT) [8] at the University
of Melbourne, with Reynolds numbers Reτ = 2800, 3900, 7300, and 19030.

First, the basic statistical properties of the data from the QLOA observation are supplied. As
a representative case, the result at z/δ = 0.0114 is taken as an example to show the probability
density function (PDF) of the streamwise velocity fluctuation u. The observational results are
shown in Fig. 1(a) by the black filled symbols; moreover, the standard Gaussian distribution [red
curve in Fig. 1(a)] is supplied for comparison. The hyper- and sub-Gaussian distributions are
also added in Fig. 1(a); the corresponding definition can be found later. It can be seen that the
observational result is close to Gaussian distribution, but a deviation around the maximum value
from the Gaussian behavior can be found, which is fairly consistent with the TBL results from
Vallikivi et al. [9]. In addition, the tail of the measured PDF P(u+) is slightly lower than that
of the standard Gaussian distribution towards the tail of the sub-Gaussian distribution. Next, to
further evaluate the statistical convergence of the data, the premultiplied PDFs of the streamwise
velocity fluctuations are examined based on the PDF P(u+). Premultiplied PDFs for 2p = 2, 4, 6,
8, and 10 are shown in Fig. 1(b). In the premultiplied form, the area under the curve represents the
magnitude of the corresponding moment. Theoretically, for the Gaussian distribution, its higher-
order premultiplied PDF is symmetric. However, since the measured results do not strictly satisfy
the Gaussian distribution [as shown in Fig. 1(a)], the corresponding premultiplied higher-order
PDF inevitably exhibits asymmetry to some extent. It can be seen that the curves for 2p = 2, 4,

L082602-2



SELF-SCALING GENERALIZED TOWNSEND-PERRY …

(a) (b)

FIG. 1. (a) Probability density function (PDF) for the ASL at a height of z/δ = 0.0114; �, P(u+); the
red, blue, and gray curves represent Gaussian, hyper-Gaussian, and sub-Gaussian distribution, respectively. (b)
Premultiplied PDF of normalized velocity fluctuations u+2pP(u+) for the ASL dataset, at a height of z/δ =
0.0114. Different moments are represented as 2p = 2 (�), 2p = 4 (•), 2p = 6 (�), 2p = 8 (�), and 2p = 10
(�). Each curve has been normalized by its peak for plotting purposes.

6, 8, and 10 show acceptable “closure” from the premultiplied PDFs [8]. This indicates that every
higher-order moment of the streamwise velocity fluctuations is well-captured by the amount of the
data available, which enables further investigation of the self-scaling generalized Townsend-Perry
constants for high-order moments of the streamwise velocity fluctuations.

Results: High-order moments for wall-attached and nonattached eddies. With the development
of studies on coherent motions in wall turbulence, many researchers have suggested that the flow
field not only includes eddies that can be described by the AEM, but also contains other large-
scale energetic motions of other nature [12,15]. These coexisting eddies in high-Reynolds-number
flows may cause the overall statistical characteristics of the flow field to deviate from the predicted
tendency. As the Reynolds number increases, more abundant eddies with nonattached properties
that deviate from the AEM prediction emerge in high-Reynolds-number wall-bounded flows. In
this scenario, scholars have proposed many methodologies to separate/extract eddies satisfying the
AEM [11,12,15]. In this study, the wall-coherent (wall-attached) signal uA(z; t ) at different heights
can be obtained by the spectral linear stochastic estimation (SLSE) technique [16]. The near-wall
signal u+(zR) [Fig. 2(a)] and the signal u+(z) [Fig. 2(b)] at a higher position are transformed into
Fourier space to obtain the scale-dependent complex-valued kernel, H (zR, z; f ), which is defined by

H (zR, z; f ) = 〈û(z; f )û(zR; f )〉
〈û(zR; f )û(zR; f )〉 = |H (zR, z; f )|e jφ(zR,z; f ), (4)

where 〈·〉 denotes the ensemble average, the OverHat represents the Fourier transform, | · | des-
ignates the modulus, the overline indicates the complex conjugate, and φ(zR, z; f ) is the phase
difference of the two spectra. The spectral domain estimate of the wall-coherent velocity of
hierarchies of eddies above the near-wall reference height zR can be expressed as

ûA(z; f ) = H (zR, z; f )û(zR; f ). (5)

Finally, the time-domain conditional estimate is obtained by the inverse Fourier transform,
uA(z; t ) = F−1[ûA(z; f )] [red line in Fig. 2(c)]. The entire decomposition procedure is presented
by the diagram in Fig. 2(d). The analysis of the SLSE in this study follows the methods of Baars
et al. [16] and Hu et al. [15], and there is no additional specific selection of data from which to
choose the desired results in this study.

Based on this data-driven decomposition methodology (5), the coherent velocity uA with wall-
attachedness over the whole observational range can be obtained. These decomposed portions are
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FIG. 2. (a) The fluctuating velocity signal at reference point zR. (b) The fluctuating velocity signal at
traversing point z. (c) The full-scale signal and the corresponding wall-attached signal at traversing point z.
(d) Diagram of the decomposition procedure.

individually explored to evaluate their high-order moment characteristics (2p = 2, 4, 6, 8, and 10),
and the results are shown in Fig. 3(a). Note that the moments for each order of the decomposed
velocity fluctuations intuitively show log-linear decay in the logarithmic layer, which is quite
similar to the “generalized logarithmic law” proposed by Meneveau and Marusic [8], i.e., satisfying
Eq. (3). However, the decay slopes are quite different. Here, taking the moment order 2p = 2

(a) (b)

FIG. 3. (a) Moments of order 2p = 2 (�), 2p = 4 (•), 2p = 6 (�), 2p = 8 (�), and 2p = 10 (�) of
decomposed streamwise velocity fluctuation u+

A as a function of wall-normal distance z/δ for the ASL dataset.

The red dashed lines are the fitting lines with Ap = [(2p − 1)!!]
1/p

. (b) The self-scaling Ap/A1 as a function of
the moment order 2p. The red filled symbols are results from the decomposed wall-attached portions, and the
gray filled symbols are the results from the residual part. The black open, purple open, and blue filled symbols
are the undecomposed results from Meneveau and Marusic [8], Cheng et al. [19], and QLOA, respectively.
The error bars in the vertical axis represent the corresponding standard deviation for the datasets in similar

conditions. The black dashed curve indicates the Gaussian values Ap/A1 = [(2p − 1)!!]
1/p

.
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as an example, the near universal slope A1 = 1.07 for wall-attached portions is consistent with
the turbulence intensity slope with z previously reported in Baars and Marusic [17] (A1 = 0.98)
and Hu et al. [15] (A1 = 1.0). It shows that the decay slopes of the turbulence intensity for
decomposed motions are generally invariant and are essentially free of Reynolds number effects
[17], satisfying the description in the AEM [3]. This evidence suggests this data-driven method
is effective in extracting wall-attached motions in this study. However, the decay slopes for the
undecomposed fields are approximately 1.21−1.33 and have a weak Reynolds number dependence
[4,6,18]. In addition, the decay slopes of the high-order moments for the decomposed portions [red
symbols in Fig. 3(a)] can almost be described by the Gaussian prediction in Eq. (3) [red dashed
line in Fig. 3(a)] with satisfying Ap = A1[(2p − 1)!!]1/p in high-Reynolds-number flows. Since
the magnitude of the decay slope A1 (Townsend-Perry constant) is shown to be approximately 1
through both the decomposition method used in this study [Fig. 3(a)] and different decomposition
methods previously reported [15,17], the generalized Townsend-Perry constants Ap can be expressed

as Ap = [(2p − 1)!!]
1/p

. In that way, the generalized logarithmic law Eq. (3) proposed by Meneveau
and Marusic [8] in terms of describing the high-order statistical moments of wall-attached motions
can be further written in a straightforward way as

〈
u+2p

A

〉1/p = Cp − Ap ln(z/δ)

= Cp − [(2p − 1)!!]1/p ln(z/δ), (6)

where Cp can be analogized to Bp in Eq. (3), which only depends on the flow conditions and
geometry [8].

In addition, variations in the self-scaling decay slope Ap/A1 for each high-order moment with
order are further evaluated and are presented in Fig. 3(b). As predicted by Meneveau and Marusic
[8], the tendency of Eq. (6) (black dashed line) is in good agreement with the variation of high-order
moments for wall-attached motions (red line), which illustrates that Eq. (6) provides a good
description of the high-order moment behavior of wall-attached motions. However, the result for
the remaining nonattached portions [gray line in Fig. 3(b)] obtained through the decomposition
still exhibits sub-Gaussian behavior, meaning that the nonattached-eddy contribution superposed on
contribution 〈u+2p

A 〉1/p
from wall-attached eddies masks the Gaussian behavior of the wall-attached

eddies, thus giving rise to the measured sub-Gaussian statistics. In this scenario, the universal
expression of the self-scaling generalized Townsend-Perry constants is desired to provide a good
indication on the variation of the measured high-order statistics.

Universal expression of the self-scaling generalized Townsend-Perry constants: Theoretical
analysis. Because the Gaussian distribution is not capable of characterizing the measured results,
it is necessary to start with the most fundamental generalized Gaussian distribution function. The
PDF for a generalized Gaussian distributed zero-mean random variable u with standard deviation σ

is given by

P(u, α, β ) = α

2βΓ (1/α)
e−( u

β
)α
, (7)

where α > 0 is the shape parameter, β = σ
√

Γ (1/α)/Γ (3/α) is the scale parameter, and Γ is
the gamma function [Γ (x) = ∫ +∞

0 t x−1e−t dt , x > 0] [20,21]. Then, the kth moment of the random
variable u can be expressed as

〈uk〉 =
∫ +∞

−∞

αuk

2βΓ (1/α)
e−( u

β
)α du

= αβk

2Γ (1/α)

∫ +∞

−∞

(
u

β

)k

e−( u
β

)α d

(
u

β

)
. (8)
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FIG. 4. The self-scaling generalized Townsend-Perry constants against α for 2p = 2 to 10. The filled
symbols of order 2p = 2 (�), 2p = 4 (•), 2p = 6 (�), 2p = 8 (�), and 2p = 10 (�) are [(2p − 1)!!]1/p as
recorded in Meneveau and Marusic [8].

When k is odd,

〈uk〉 = 0. (9)

When k is even,

〈uk〉 = αβk

Γ (1/α)

∫ +∞

0

(
u

β

)k

e−( u
β

)α d

(
u

β

)
. (10)

Let (u/β )α = z, and Eq. (10) can be written as

〈uk〉 = βk

Γ (1/α)

∫ +∞

0
z

k
α e−zz( 1

α
−1)dz

= βk

Γ (1/α)
Γ

(
k + 1

α

)
. (11)

Since k is even, let k = 2p. After simplification, Eq. (11) becomes

〈u+2p〉1/p = Γ
( 2p+1

α

)1/p
Γ (1/α)

p−1
p

Γ (3/α)
σ+2. (12)

Thus far, the relationship between the high-order moments and the 2nd moment (variance) of
random variable u can be obtained. Combined with the logarithmic law in Eq. (2), the self-scaling
generalized Townsend-Perry constants Ap/A1 can be expressed as

Ap/A1 = Γ
( 2p+1

α

)1/p
Γ (1/α)

p−1
p

Γ (3/α)
. (13)

The self-scaling generalized Townsend-Perry constants for 2p = 2, 4, 6, 8, and 10 are shown in
Fig. 4. When α < 2 (or α > 2), the corresponding distribution is hyper-Gaussian (or sub-Gaussian).
Their respective distributions can be found in Fig. 1(a).
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FIG. 5. (a) Moments of order 2p = 2 (�), 2p = 4 (•), 2p = 6 (�), 2p = 8 (�), and 2p = 10 (�) of
streamwise velocity fluctuation as a function of wall-normal distance z/δ for the ASL dataset. Dashed lines are
the fitting lines with Eq. (3). (b) The self-scaling Ap/A1 as a function of the moment order 2p; the symbols are
as labeled in Fig. 3(b).

In particular, when α = 2, the PDF of the random variable u follows a Gaussian distribution. Eq.
(11) can be further simplified as

〈uk〉 = βk

Γ (1/2)
Γ

(
k + 1

2

)

= (k − 1)!!σ k. (14)

Let k = 2p, and

〈u+2p〉1/p = [(2p − 1)!!]1/p〈u+2〉
= [(2p − 1)!!]1/p[B1 − A1 ln(z/δ)]

= Bp − Ap ln(z/δ). (15)

Equation (15) is the generalized logarithmic law expression of streamwise velocity fluctuations
proposed by Meneveau and Marusic [8], where Ap = A1[(2p − 1)!!]

1/p
, as shown in Fig. 4 by filled

symbols.
Empirical parameter and model validation. High even-order moments for 2p = 2, 4, 6, 8, and

10 in near-neutral ASL are evaluated as a function of the wall-normal distance and are shown in
Fig. 5(a). Every high-even-order moment in the logarithmic layer exhibits the “generalized loga-
rithmic law” behavior proposed by Meneveau and Marusic [8], i.e., Eq. (3). Meneveau and Marusic
[8] also predicted that the logarithmic decay slope Ap (generalized Townsend-Perry constants) of the

streamwise velocity fluctuations with Gaussian distribution should satisfy Ap = A1[(2p − 1)!!]
1/p

,
and the predicted tendency is shown in Fig. 5(b) as the black dashed line. As Meneveau and
Marusic [8] noted, whether in TBL experiments [8,11,19] or in ASL observations, Ap/A1 fails to
collapse onto the predicted trend that assumes Gaussian statistics but is consistent with sub-Gaussian
behavior. [In Eq. (13) for 2.53 < α < 8.55, as shown in the gray area in Fig. 5(b), in particular, the
ASL result in this study can fairly satisfy the universal expression of the generalized logarithmic
law expressed in Eq. (13) for α = 2.66, as shown by the red line.]

In Eq. (12), the relationship between the high-order moments of the streamwise fluctuations u and
second moment (variance) are obtained, which can effectively capture the statistical characteristics
of the flow. However, it is important to note that there still exists a shape parameter α in Eq. (12)
which needs a posteriori assessment. The exact expression form must be determined to refine the
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(a) (b)

FIG. 6. (a) The shape parameter α versus Reτ . The black open symbols (�) are the results from Meneveau
and Marusic [4], and the blue open symbols (�) are the results from Vallikivi et al. [9]. The blue filled symbol
is the result from this study and the red curve is the asymptotic expression [Eq. (16)]. The error bars in the
abscissa and ordinate axes represent the corresponding standard deviations of the Reynolds number and α for
the datasets in similar conditions, respectively. (b) The self-scaling Ap/A1 as a function of the moment order
2p; the blue open symbols are the results from Cheng et al. [19] and Vallikivi et al. [9]. The red curves are the
self-scaling generalized Townsend-Perry constants for the respective Reynolds number conditions calculated
via Eqs. (13) and (16).

completeness of Eq. (12). Combining the high-quality experimental results [8] and observational
result in this study, parametric equations are fitted and are given as [shown in Fig. 6(a)]

α = 2.53 exp
2056.60

Reτ − 400
, (16)

where 400 is the asymptotic Reynolds number where the logarithmic layer dawns (i.e., 3Re1/2
τ =

0.15Reτ ) [4]. It can be easily seen that the coefficient 2.53 represents the asymptotic value for
Reτ → ∞. To present the validity of the asymptotic expression, several sets of data with different
Reynolds numbers are employed. It can be seen that the results in Vallikivi et al. [9] agree well
with the asymptotic expression in Eq. (16) in medium Reynolds number range [blue open symbol
in Fig. 6(a)]. In addition, the self-scaling generalized Townsend-Perry constants reported earlier
(in low Re condition [19] and in medium Re condition: [9]) show good agreement with the
universal expression in Eq. (13) proposed in this study [red lines in Fig. 6(b)]. That is to say, the
asymptotic expression in Eq. (16) is capable of describing the variation of parameter α, and the
universal expression in Eq. (13) can effectively predict the measured self-scaling generalized
Townsend-Perry constants spanning four to five orders of magnitude in the Reynolds number. It
should be noted that the asymptotic value of α is 2.53, while the Gaussian distribution for α is 2.
This difference indicates that the nonattached eddy contribution is nonnegligible for an asymptotic
high Reynolds number, and AEM cannot provide a complete description of the full-scale flow field,
especially in high-Reynolds-number conditions.

Concluding remarks. In conclusion, the self-scaling generalized Townsend-Perry constants
Ap/A1 for high-order moments in high-Reynolds-number turbulent boundary layers have been
investigated. Nonattached eddies with sub-Gaussian statistics are found to mask the Gaussian
behaviourbehavior of the wall-attached eddies in the flow field. In this scenario, the contribution for
nonattached eddies is nonnegligible, and the attached eddy model is unable to describe the entire
flow field, even in high-Reynolds-number flows. Leveraging the generalized Gaussian distribution
function, the universal expression of the self-scaling generalized Townsend-Perry constants, regard-

less of the eddy type, is derived, i.e., Ap/A1 = Γ ((2p + 1)/α)
1/p

Γ (1/α)
p−1

p Γ (3/α)−1. Moreover,
the asymptotic expression of the shape parameter α in self-scaling generalized Townsend-Perry con-
stants is characterized by data in boundary layers and atmospheric surface layers with the Reynolds
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number Reτ spanning over O(103) to O(106). The expression can describe the measured sub-
Gaussian behavior of high-order moments in a flow field.

The findings in this study may contribute additional insight into the fundamental statistical
characteristics of coherent motions in flow fields and provide a good indication to test the accuracy
of numerical simulations in high-Reynolds-number flows. It should also be noted that the present
study further confirms that the attached eddy model cannot provide a complete description of the
full-scale flow field. A universal physical expression (model) for the flow field is needed for future
studies.
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