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Direct numerical simulations (DNSs) are among the most powerful tools for studying
turbulent flows. Even though the achievable Reynolds numbers are lower than those ob-
tained through experimental means, DNS offers a clear advantage: The entire velocity field
is known, allowing for the evaluation of any desired quantity. This capability includes the
computation of derivatives of all relevant terms. One such derivative provides the indicator
function, which is the product of the wall distance and the wall-normal derivative of the
mean streamwise velocity. This derivative may depend on mesh spacing and distribution,
but it is extremely affected by the convergence of the simulation. The indicator function is
crucial for understanding inner and outer interactions in wall-bounded flows and describing
the overlap region between them. We find a clear dependence of this indicator function on
the mesh distributions we examine, raising questions about classical mesh and convergence
requirements for DNS and achievable accuracy. Within the framework of the logarithmic
plus linear overlap region, coupled with a parametric study of channel flows and some pipe
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flows, sensitivities of extracted overlap parameters are examined. This study reveals a path
to establishing their high-Reτ or nearly asymptotic values at modest Reynolds numbers,
but larger than the ones used in this work, accessible by high-quality DNS with reasonable
cost.

DOI: 10.1103/PhysRevFluids.9.L082601

Over the past half century, direct numerical simulation (DNS) has become a widely used
approach to study fundamental aspects of wall-bounded turbulence [1–5]. One topic within wall-
bounded turbulence that has received extensive attention from the research community due to its
significant implications is the overlap region of the mean velocity profile. In this overlap region,
the large structures that populate the outer layer coexist with the smaller ones, which are strongly
influenced by the wall and viscous effects. According to the classical literature, the mean velocity
profile in this overlap region follows the well-known logarithmic law, with its Kármán constant κ

[6]:

Ux
+
in(y+ � 1) = 1

κ
ln y+ + B0. (1)

In this equation, Ux is the streamwise mean velocity, i.e., we decompose the instantaneous velocity
as Ux = Ux + u. The subindex “in” (for inner) indicates that we are using the wall characterization
of this velocity. Over the years, this has been a topic of active study, and the universality of the
logarithmic law and the von Kármán coefficient has been occasionally challenged or reaffirmed (see,
e.g., Refs. [7–10]). Recently, Monkewitz and Nagib (MN) [11] shed additional light on this topic,
extending the accumulated knowledge during the past century. Monkewitz and Nagib’s main point
is to consider in the inner asymptotic expansion a term proportional to the wall-normal coordinate,
O(Re−1

τ ), which is of the same order as the logarithmic term, and different from other previous
works [12,13], where it is a higher-order term. Here Reτ = uτ δ/ν is the friction Reynolds number,
with δ a characteristic outer length. This δ can be considered as the radius R in pipes and the
semiheight h in channels or δ99 in boundary layers. Following MN, the pure logarithmic law is not
observed in channels, pipes, and other flows with streamwise pressure gradients [14] for all Reτ .
Monkewitz and Nagib’s extended matched asymptotics method reveals an additional term in the
expansion of the velocity for this layer, leading to an extra contribution in the overlap layer in the
form S0y+Re−1

τ , where S0 is a coefficient.
Interestingly, the overlap region represented by combined logarithmic and linear terms exhibits

values of the von Kármán coefficient κ consistent with those obtained from skin-friction relations, a
fact that suggests that this approach can reveal high-Re trends even at moderate Reynolds numbers
(see, for example, [14,15]). The main point of this matched asymptotic theory is to use a new
expression in the overlap region for U x. Monkewitz and Nagib’s formula reads

Ux
+
in(y+ � 1) ∼ κ−1 ln y+ + B0 + B1/Reτ + S0y+/Reτ . (2)

To obtain accurate values of these coefficients, it is necessary to address two fundamental issues:
To find κ , the challenge is to identify the location and extent of the overlap region, which is weakly
dependent on the Reynolds number [11], and to obtain the correct value of S0, it is necessary
to obtain with high accuracy the values of dUx

+
/dy+. For the latter, it is possible to obtain an

equation for the values of κ and S0 through the indicator function

�(y+) = y+ dUx
+

dy+ . (3)
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TABLE I. DNS case labels and nomenclature of pipe P and channel C flows, with NR and HR representing
classical and high resolution in y and C and F denoting coarse and fine in x and z. Here Lx and Lz are periodic
streamwise and spanwise dimensions; δ is either the channel half height or pipe radius; �x+ and �z+ are
inner-scaled resolutions in terms of dealiased Fourier modes; the wall-normal direction is indicated in both
flows by y; Nx , Nz, and Ny are the numbers of collocation points in three different directions; the time span of
the simulation is given in terms of eddy turnovers uτ T/δ; and ε is a measure of convergence, defined in [17].
The last two columns give the values of κ and S0 as defined in Eq. (4). Colors in the first column are used in
Figs. 1(a), 3, and 4, with dashed lines for the channel.

Case Reτ Lx/δ Lz/δ �x+ �(Rθ+) max(�y+) min(�y+) Nx Nz Ny ETT ε × 10−4 κ S0

PNRF 549 10π 2π 5.62 3 3.2 0.018 3072 1152 256 93 1.2 0.444 2.69
PHRF 549 10π 2π 5.62 3 1.6 0.005 3072 1152 512 87 2.6 0.449 2.88
PNRC 549 10π 2π 11.2 4.5 3.2 0.018 1536 768 256 184 0.8 0.451 2.77
PHRC 549 10π 2π 11.2 4.5 1.6 0.005 1536 768 512 56 3.8 0.429 2.53
CNRC 546 8π 3π 9 4.5 5.85 0.8 1536 1152 251 150 0.7 0.434 1.61
CHRC 546 8π 3π 9 4.5 1.68 0.05 1536 1152 901 150 0.3 0.438 1.68

From Eqs. (2) and (3), one can obtain the equation for κ and S0:

�(y+) = κ−1 + S0y+/Reτ = κ−1 + S0(y/δ). (4)

Thus, to accurately determine S0, it is necessary to compute the indicator function with high
accuracy, an aspect that has not been sufficiently investigated in the literature. Early concerns about
classical resolution practices appeared in DNS of homogeneous isotropic turbulence [16]. While
a convergence criterion exists for fully developed flows [17] and the domain size of the problem
has been examined in depth [18,19], the necessary grid spacing has received much less attention.
Examples can be found in some very large simulations [4,20], where the authors only report their
mesh size and compare their results with those in previous references, which basically do the same.

We have performed two different numerical experiments to examine this issue and its implica-
tions. The details can be found in Tables I and II. On the one hand, we have studied a smooth pipe
of radius R and length Lx = 10πR for Reτ = 550. We will also use y to indicate the distance to the

TABLE II. Channel-flow DNS cases for higher Reτ than in Table I, with the nomenclature Hx, Nx, and Dx
representing half, classical, and double resolution in x and using the same convention for z. Other notation is
described in Table I. A theoretical cost of each simulation compared to the case with the classical resolution,
C83NxNz, is estimated in the last column for one ETT. Colors given in third column are used in Figs. 1(b) and
5.

Case Reτ Line Lx/δLz/δ �+
x �+

z max(�y+)min(�y+) Nx Ny Nz ETTε × 10−4 κ S0 Cost

C21NxNz 1000 2π π 8.2 4.1 7.3 0.4 768 383 768 160 2.4 0.3861.27 0.08
C42NxNz 1000 4π 2π 8.2 4.1 7.3 0.4 1536 383 1536 50 3.1 0.4151.77 0.33
C83NxNz 1002 8π 3π 8.2 4.1 7.3 0.4 3072 383 2304 47 1.5 0.3991.36 1
C163NxNz 1001 16π 3π 8.2 4.1 7.3 0.4 6044 383 2304 44 0.9 0.4011.46 2
C83DxDz 1000 8π 3π 4.1 2.0 7.3 0.4 6044 383 4608 29 2.8 0.4001.52 8
C83NxDz 1000 8π 3π 8.2 2.0 7.3 0.4 3072 383 4608 36 2.0 0.3921.39 2
C83DxNz 1002 8π 3π 4.1 4.1 7.3 0.4 6044 383 2304 15 3.3 0.3961.27 4
C83HxHz 1017 8π 3π 16.4 8.2 7.3 0.4 1536 383 1152 83 0.2 0.4151.62 0.12
C83HxNz 1001 8π 3π 16.4 4.1 7.3 0.4 1536 383 2304 37 0.8 0.4091.57 0.25
C83NxHz 1018 8π 3π 8.2 8.2 7.3 0.4 3072 383 1152 10 10 0.3941.29 0.5
CL83NxNz1000 8π 3π 8.2 4.1 2.5 0.08 307210852304 25 9.4 0.3941.42 3
C86NxNz 1001 8π 6π 8.2 4.1 7.3 0.4 3072 383 2304 35 3.4 0.4011.44 2
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FIG. 1. (a) Profile of Ux for the pipe and channel cases of Table I, with the inset showing the difference
between the finest resolution case and others. (b) Plot of Ux (black line) for case CL83NxNz of Table II, with
overlap relations given by the classic logarithmic law (1) (blue dotted line) and the logarithmic line, Eq. (2)
(red dash-dotted line) and Eq. (4) (green dots). The inset depicts the percent error for each.

wall on the pipe to facilitate the notation. We have used four different meshes, as seen in Table I.
The base mesh is the case PLRC with a classical channel resolution in x and R�. On the other
hand, the mesh in the radial direction has twice the number of points needed in a channel due to the
skewness of the cells near the pipe center. Using this large number of points, the wall-normal grid
spacing for the pipes is below the Kolmogorov scale throughout the computational domain. Starting
with the PLRC case, we doubled the cells in the radial direction (PHRC), the azimuthal streamwise
one (PLRF), and all of them (PHRF). All these simulations ran for at least 55 eddy-turnover times
(ETTs), defined as Tuτ /R.

On the other hand, we have run two sets of channel-flow simulations. The first one (CLRC and
CHRC) is a simulation with the same mesh in x and z as in the work of Hoyas and Jiménez [1]
but different for y, as the second one uses a mesh considered enough for Reτ = 3000 [21]. The
second data set (Table II) covers many different simulations for Reτ = 1000, varying the mesh and
the channel geometry.

Two different codes were employed. OPENPIPEFLOW was used to run the pipe simulations [20].
The code LISO was used for running the channel flow [1,22,23]. Both codes employ Fourier-
decomposition techniques in the streamwise and spanwise or azimuthal directions. OPENPIPEFLOW

uses a seventh-order finite-difference scheme in the wall-normal direction, while LISO uses a
tenth-order compact-finite-difference scheme [22].

In the case of the pipe flow, the difference among the four simulations appears small when
analyzing the streamwise mean velocity, as displayed in Fig. 1(a). Comparable differences are found
for the cases in Table II. Notice that the differences among the different cases are below 0.2% across
the whole domain. A second very important point is the interval of validity of the logarithmic and
log-lin layers. In Fig. 1(b) U x is plotted for the “standard” case CL83NxNz [24]. As expected,
there are only a few points in the logarithmic region, but the log-lin interval is considerably larger.
Notice that the curves obtained using Eq. (2) (red dash-dotted curve) or Eq. (4) (green dots) collapse
completely. The possible error in computing κ , S0, and any other coefficient is then independent of
the quality of the derivative.

For a detailed examination of the effects of the DNS resolution in the wall-normal direction and
to select the best overlap limits to examine all channel cases, we compare two cases in Fig. 2, with
one of them using the classical resolutions and the other with the resolution in wall-normal direction
doubled. Here we plot the L2-norm of the difference between the function and the model. As we
can see, a larger mesh implies a more ordered distribution of isolines of the error. This is directly
related to a better convergence. A second point is that the error is quite flat around the interval of
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FIG. 2. Plot of the L2-norm of error between the log-lin overlap (4) and DNS data for different intervals
for (a) case C83NxNz and (b) case CL83NxNz. The horizontal axis represents the starting point of the overlap
region and the vertical axis is the width of the overlap region. White lines are contours of constant κ . White
stars indicate selected overlap limits for all other figures.

interest 0.3 < y/δ < 0.5. We will use this interval from now on, also given that for larger Reynolds
numbers, there seems to be a collapse of � on it [15].

Part of the motivation to use the indicator function � is to allow extracting the overlap parameters
from experimental data where the accuracy of the measurements is not sufficient and the density and
regular spacing of the data are not adequate for obtaining profile derivatives. As we already said, we
achieve identical results from the mean velocity profile or its indicator function after differentiation.
Even such accuracy is not sufficient to utilize the indicator function � to extract reliable coefficients
of overlap regions. As shown in Fig. 3(a), the different curves of � for the Table I cases do not
collapse exactly in the region of interest, where the slope value of � is critical. This is more clearly
appreciated in Fig. 3(b), where the differences across cases can be more clearly assessed. Notice
that the finer mesh, the PHRF case, corresponds to the red solid line. The other three cases have not
converged to the PHRF’s value even after 100 ETTs. Better agreement is found in the case of the
channels. Here the convergence at y/h = 0.35 is obtained after approximately 15 ETTs. However,

FIG. 3. (a) Indicator function � for the six cases of Table I, depicting differences. (b) Values of � at
y/δ = 0.35 and 0.45 as a function of averaging time ta expressed in eddy-turnover times. Colors are as in
Table I, with solid lines for pipes and dotted lines representing channels. Thick lines show y/δ = 0.35 and thin
lines y/δ = 0.45.
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FIG. 4. Extracted overlap parameters (a) κ and (b) S0 for the six cases of Table I as a function of averaging
time ta expressed in ETTs. Colors are as in Table I, with solid lines for pipes and dotted lines representing
channels.

at y/h = 0.45 the differences are of the order of 2% after 80 ETTs, which is an extremely lengthy
computation for high-Reynolds-number simulations.

The effect of this lack of adequate resolution can be better evaluated by the time-averaged values
of the overlap coefficients κ , B, and S0 as functions of ETT. After 50 ETTs, the differences among
the cases are still above 3%, as shown in Fig. 4. Again, the convergence for the channel case is
better, but there remains a small difference up to 150 ETTs, which corresponds to very expensive
computations. In any case, at least 20 ETTs are needed to obtain some level of convergence. Such
differences in the indicator function � should be smaller for any reliable simulation to predict the
values of the coefficients.

Finally, in the case of pipe flow, the values of these coefficients appear to depend on the azimuthal
resolution, raising questions about the mesh aspect ratio of the grids. A careful study of such
mesh-variation effects in flows near their singularities, as in the case around the axis of pipes, is
highly recommended. Such a study should also examine the sensitivity of the indicator function �

to the order of the finite-difference scheme used in the DNS. In general, the results demonstrate that
classical and commonly used mesh sizes in the wall-normal direction for DNSs are not sufficiently
fine to extract coefficients of the overlap region in wall-bounded turbulent flows, such as κ and S0,
with good accuracy.

To further examine the sensitivities of DNS to various simulation parameters by accessible values
of Reτ while allowing a multitude of cases in a parametric study, we extended the cases of Table I
to the Reτ ≈ 1000 cases of Table II. In every case, the results of the turbulence intensities are
below a difference of 1% for either normal or double resolution (not shown). In Fig. 5(a) we show
� for every case but the half-resolution cases. This is because they are absolutely wrong on the
points close to the first minimum of �, as seen in this figure’s inset. The straight lines represent
Eq. (4). As we can see, even if the curves collapse almost perfectly, the sensitivity is very large.
This is shown in Fig. 5(b). Here κ and S0 cannot be found with less than 3% difference among
the best-resolved meshes and nearly converged cases we tested. Differences of as much as 8% are
found between all the cases of Table II, including some with inadequate resolution (green cases)
or different convergence or box sizes. For example, this creates a new uncertainty source in the
estimation of the von Kármán coefficient that is very important for modeling and predicting wall-
bounded turbulent flows, as highlighted recently by Monkewitz’s careful evaluation [25].

To conclude, after carefully studying two different geometries with two trusted high-resolution
codes, we have seen that evaluating derived quantities can be extremely difficult to obtain. In
the case of the intensities and the mean streamwise velocity, the classical resolution seems to be
enough to obtain errors below 0.5%. However, running these simulations for a very long time is
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FIG. 5. (a) Indicator function � for the cases of Table II, with straight lines depicting the log-lin overlap
relation of Eq. (4) for each case and the inset depicting the limitations in cases with worst resolution by failing
to capture the near-wall minimum value. (b) Range of extracted κ as a function of ETT for cases displayed
with line types and colors shown in Table II, with the best-resolved cases for Reτ ≈ 1000 yielding κ ≈ 0.4
and S0 ≈ 1.5. The parameters extracted from Eq. (4) for converged higher Reτ ≈ 5200 are shown by the wide
yellow line: κ ≈ 0.413 and S0 ≈ 1.15 [3,15].

necessary. Below 10 ETTs, the statistics exhibit a significant level of noise. The log-lin model of
MN [11] compared to the pure logarithmic model has allowed evaluation of the sensitivities of their
parameters, which are extremely high. Errors of around 3% on the computation of these parameters
are expected for large Reynolds numbers. Moreover, running 50 ETTs for very large simulations is
almost impossible.

The data used for this paper can be obtained by contacting the authors.
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